

A exhaustive summary on different approaches & applications related to the different fields of Digital Image Processing (DIP) with its implementation processes

^[1]**Anu Honnashamaiah**, ^[2]**Dr. Suhasini V. Kottur**, ^[3]**Subhashree Rath**, ^[4]**Dr. M.R. Prasad**,
^[5]**Dr. Pavithra G.**, ^[6]**Dr. T.C. Manjunath**

^[1]Assistant Professor, Electronics & Communication Engineering Department,
JSS Academy of Technical Education (JSSATE), Bangalore, Karnataka &
Research Scholar, JSS Technical University, ECE Dept., Mysore, Karnataka

^[2]Professor & Principal, MCA Dept., Bharati Vidyapeeth's Institute of Management & Tech.
Sector 8, CBD Belapur, Navi Mumbai, Mumbai-400614, Maharashtra State, India

^[3]Senior Assistant Professor, Department of Electronics & Communication Engg.,
New Horizon College of Engineering, Outer Ring Rd., Marathalli, Kaverappa Layout,
Kadubeesanhalli, Bangalore-560103, Karnataka

^[4]Associate Professor, Dept. of Computer Science & Engineering,
Vidya Vardhaka College of Engineering, Gokulam, Mysore, Karnataka

^[5]Associate Professor, Electronics & Communication Engineering Department,
Dayananda Sagar College of Engineering, Kumaraswamy Layout, Bangalore-560111, Karnataka

^[6]Professor & Head, Electronics & Communication Engineering Department,
Dayananda Sagar College of Engineering, Kumaraswamy Layout, Bangalore-560111, Karnataka

Emails : suhasini.kottur@gmail.com ishanimishra.phd@gmail.com dr.pavithrag.8984@gmail.com
tcmanju@iitbombay.org mrp.prasad@gmail.com

Abstract: The goal of this research paper is to study different ways to work with images. Imagine if you wanted to find specific things in a picture, like telling apart different objects. To do this, we use special methods to first turn the picture into simple black and white parts and then separate these parts from each other. We tested different methods, like Otsu's approach and K-means Clustering, to see which worked best. Then, we used the texture, shape, and color of the objects in the picture to understand more about them. We also used a tool that helps find the edges of objects and cleans up any unwanted specks in the image, making it easier to see. This study also discusses picture categorization algorithms such as Artificial Neural Networks and Support Vector Mechanisms. An ANN categorises the image into the receptive class, and SVM is used to compile all of the categorised results. Overall, the study provides in-depth understanding of picture processing and identification procedures.

Keywords: Preprocessing, Extraction, Segmentation, Classification, Noise Removal, K-means, Edge Detection.

1. Introduction Remarks

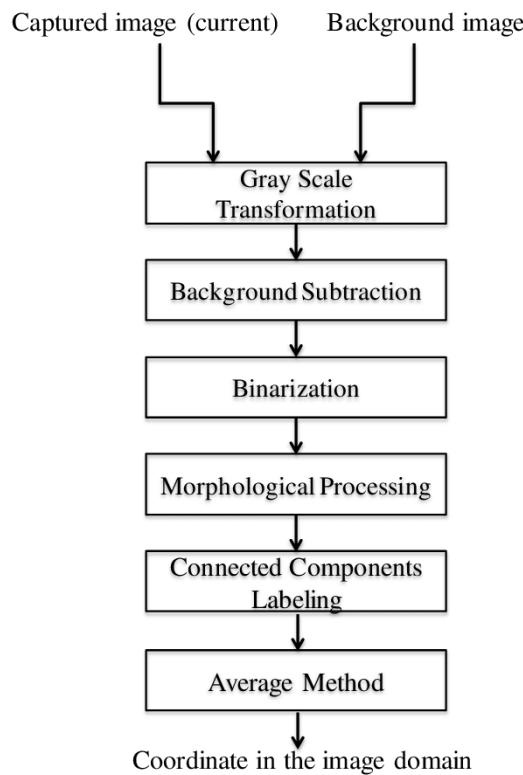
The process of extracting the images, processing a raw image & giving out a noise free or a smoothed image is called as Image Processing. Usage and Applications are of many fold because digital image processing has so many applications and affects practically every technical sector. What are the different types of DIP & is a technique for identifying patterns and characteristics in photographs. Pattern recognition is utilised in a variety of application, including handwriting analysis, image identification, and computer-assisted medical diagnosis [1][2].

Filters are used in image processing techniques to enhance an image. Their primary functions are to alter an image's contrast, brightness, resolution, and noise level. Image processing features such as contouring, image sharpening, blurring, embossing, and edge recognition are common. The use of a digital computer to process digital photographs using an algorithm is known as digital image processing. This allows us to use a wider range of

methods on the data we start with and helps us avoid problems like unwanted sound and changes during the process [3][4].

Digital image processing refers to the use of a computer to work with digital photos using specific algorithms. Unlike analog image processing, this digital approach offers several benefits. It provides a wider range of algorithms to work with input data and helps prevent problems like noise and distortion during processing. Digital image processing deals with multidimensional systems because images have two or more dimensions. Three key factors affect the emergence and growth of digital image processing: first, the growth of computers; second, the development of mathematics (especially the creation and improvement of discrete mathematics theory) [5][6].

Image processing is a type of signal processing where the input is an image. It involves converting an image into a digital format and then conducting various operations to enhance the image or extract useful information from it. In essence, it's a method for working with image data. The method takes a picture as input and applies efficient algorithms to produce image, data, or attributes linked with that image. Image segmentation is the first step in the processing process. Image segmentation algorithms have a certain amount of desire. The first is that of speed. It does not wish to spend a lot of time processing a picture for segmentations [7][8].


The object's shape integration is the second factor to consider. This will improve the outcomes in image recognition. If the shape's outcome is not satisfactory, it needs to be refined or completed. Picture division is a technique used in computer vision to divide a complex image into pieces. The goal of division is to detangle or maybe transform a picture's portrayal into something more relevant and less difficult to evaluate. Picture division is a common technique for locating articles and limits in photographs. Picture division, however, is the process of assigning a mark to each pixel in a picture in such a way that pixels with the same label share certain features [9][10].

Three main factors have driven the evolution and progress of digital image processing: firstly, the development of computers; secondly, advances in mathematics, with a particular focus on the creation and enhancement of discrete mathematics theory; and thirdly, the growing need for diverse applications in fields such as the environment, agriculture, military, industry, and medical science..

In general, division is the first and most important step in any project that involves analysing or interpreting an image. Any impediment between low-level picture preparation and abnormal state picture handling is overcome by division. There will be a few different types of division procedures. In light of histogram evaluation, Otsu's division approach is widely used in a variety of applications. The method divides a picture by increasing the difference between pieces while limiting the difference within the portions. For separating hand compositions, proposes an Otsu-strategy modification from a ruckus-inducing start. In order to extract distinct focuses in the data photos, the Otsu-technique is used, Otsu's 1D-histogram-based technique for division into a "2D-Otsu" [11][12].

The first single edge type Otsu strategical expression for separating the information image into "forefront" and "foundation" for one ideal limit. Proposes using this unique Otsu technique to obtain a first layer of content versus foundation, then re-thresholding the foundation pixel to obtain a second layers of frontal areas content. The last content division is created by connecting the frequent layers of content. At the time, a comparative recursive methodology was presented. The recursive division concept is also used, this time for dim scale images. The images are categorized into two types: scalar images, where each part is a single number, and vector images, where each component is a vector or a multi-part number that can be divided into multiple segments. This categorization depends on the nature of the data contained in the image matrix. Fig. 1 gives different approaches of DIP [1].

The process of finding a picture's edge is known as edge recognition. Recognizing picture edges is an important step toward understanding picture highlights. Significant highlights and noteworthy facts can be found on the edges. It essentially shrinks the image size and filters away data that is considered less significant, maintaining the picture's essential auxiliary qualities. Most photographs have some degree of redundancy, which can be moved when edges are discovered and resolved during recreating. This is where edge discovery plays a key role in automating these photo-interpretation activities. It emphasises the importance of selecting the best appropriate input data to solve these two difficulties [6]. There are two types of images have been utilized: Rapid Eye data & 50 cms ground resolutions aerial ortho-images.

Fig. 1: Different types of approaches used in DIP [1]

2. Different Approaches of DIP

Digital image processing disciplines include picture identification, image segmentation, and image compression, to name a few. It is also the essential square in many applications, such as pattern detection and object identification. Although digital image processing is the most prevalent, optical and analogue methods are still feasible options. This poll focuses on broad approaches that can be used to help them. The processes of imaging is the recovery of images (or, in any event, delivering the input data). Picture processing approaches generate distinct colour planes from an image, which are subsequently processed using standard signal processing techniques. Images are another name for three-dimensional communications. Image processing techniques are discussed in only a few works [13][14].

2.1 Segmentation Approaches

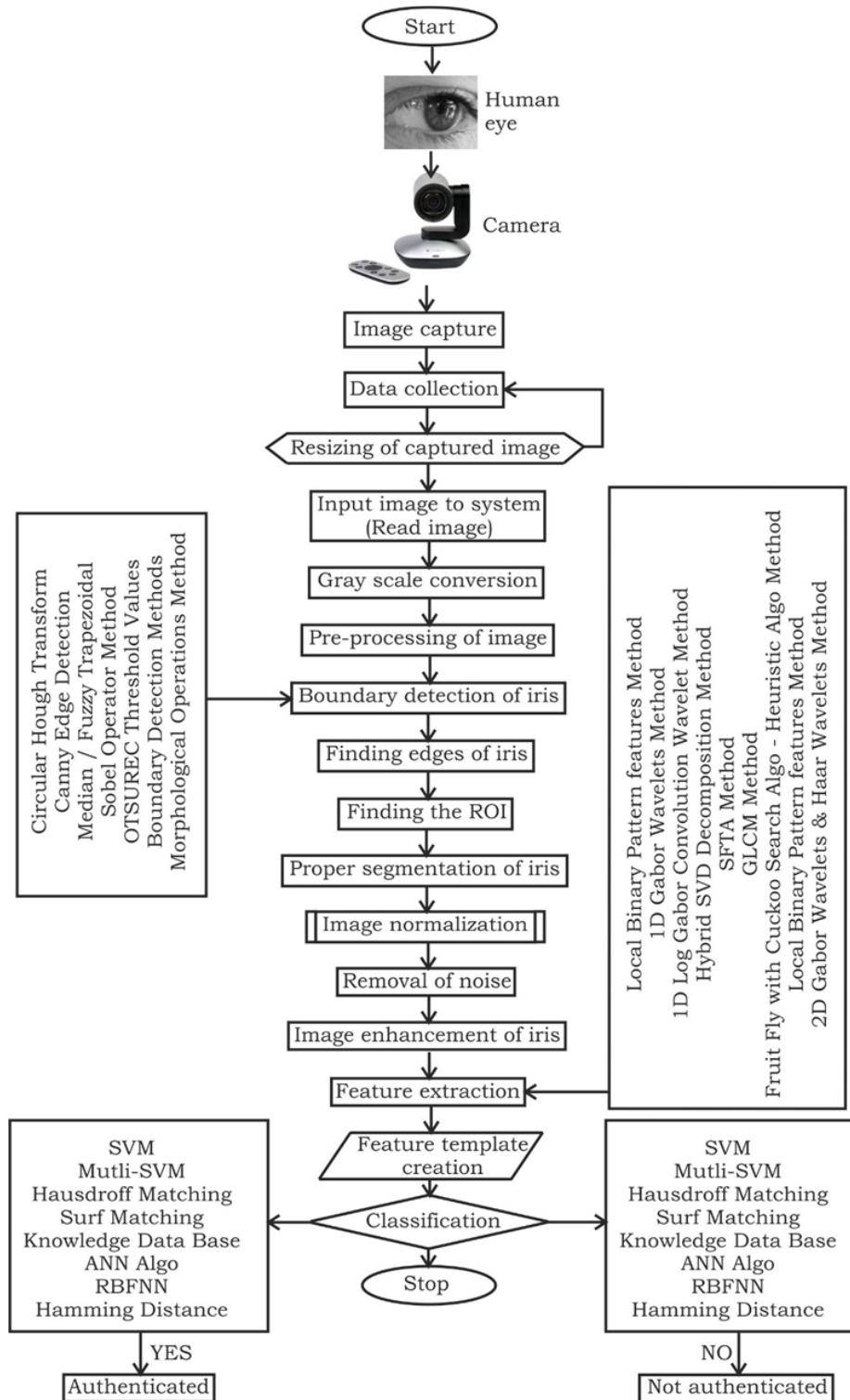
DIS - Digital Image Segmentation is a technique for splitting a photograph into two frames that are similar in some way and then preparing them as paired frames. The segmentation operation is the first stage in many image processing applications. The technique includes object attributes, portrayal, and detail estimation. After the item grouping, comes the higher request errand. As a result, image segmentation is primarily reliant on categorization, visualising a region of interest in each image, and description. Various segmentation methods exist in the literatures that separate an images into a number of region based on image qualities such as pixel quality esteem, shading, colour, form, and so on. All of these computations are explained in terms of the segmentation method employed [15][16].

Merits : It may just look for edges to segment an image. A higher-order task follows the classification of objects.

Demerits : Many objects are difficult to recognise using these methods, which is a drawback.

A 2-area ANN and a SVM approach were utilised in the study to categorise photos. SVM is used to compile all of the classified results after an ANN categorises the image into the receptive class. Image segmentation is the process of partitioning a digital image (consisting of a number of objects) into individual multiple segments (individual objects). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to analyze. Image segmentation is typically used to locate objects

and boundaries in images. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain characteristics.


In this segmentation process, the image's center is located. Subsequently, two circles are fitted over the inner and outer boundaries of the iris. Unwanted areas are then eliminated, leaving only the iris portion. This process involves the application of histogram equalization and Canny edge detection. Finally, the image is transformed into a rectangular form [17]. Image segmentation results in a collection of segments that cover the entire image or a set of extracted contours from the image. Within each region, the pixels share similarities in terms of a particular characteristic, such as color, intensity, or texture. Adjacent regions exhibit significant differences in this same characteristic [18].

Segmentation is a crucial step in image processing that divides an image into distinct regions, with each region containing pixels that share similar attributes. The goal is to create regions that correspond to meaningful objects or features within the image. This transition from low-level image processing, which involves converting a grayscale or color image into one or more images, to high-level image description in terms of features, objects, and scenes begins with meaningful segmentation.

The reliability of segmentation is pivotal for the success of image analysis, but accurately partitioning an image is often a complex task. In the context of this work, segmentation plays a vital role in removing the effects of eyelids and isolating the iris region from the pupil. When acquiring an image, it's possible to capture the iris along with the eyelids. These eyelid effects can interfere with the process of feature extraction, especially when focusing on important features like ridges and blood vessels. Additionally, the pupil is located at the center of the iris, but for our purposes, we are not concerned with the features of the pupil. Therefore, our objective is to separate the iris region from the pupil [19][20].

A commonly recommended segmentation method, employed by various researchers, involves the use of Circular Hough Transform. While it is an effective technique, it can be time-consuming and memory-intensive, which may lead to a smoothed or blurred image of the eye. To determine the outer boundary of the iris, the largest connected component in the processed image is identified, and a circle is fitted around it to establish the iris boundary. This process is referred to as "outer segmentation." Once the iris boundary is known, the range of the pupil boundary can be calculated, as it is typically in a certain ratio to the iris boundary. Generally, the ratio between the iris and pupil ranges from $IRIS/Pupil > 2$ and $IRIS/Pupil < 4$ [21][22].

After detecting the outer boundary, the image regions outside this boundary, which do not belong to the iris and are not relevant to our system, are removed. To find the inner iris boundary, a canny edge detector is applied to the outer segmented image. As mentioned earlier, the iris and pupil typically have a radius ratio of 2. This is an empirical measure based on the CASIA V4 database images and may vary for images from other databases. To achieve this, a circular mask with a radius of $R = (Radius\ IRIS)/2$ is used to eliminate all regions outside of this radius, thereby removing unwanted areas [23][24].

Fig. 2: Iris recognition phase in image processing

Next, scan the entire image to identify the longest connected component, which will represent the pupil's boundary. Remove the entire portion of the image inside this boundary, as we are not interested in the pupil for our system. This action results in an image with the inner iris circle fitted. Consequently, the entire iris is successfully segmented from the rest of the image, providing us with a fully segmented image. This technique is equally effective for both left and right eyes. It offers a straightforward approach and serves as an efficient alternative to the time

and memory-intensive Circular Hough Transform. The Fig. 2 gives an brief idea about the Iris recognition phase that could be used in image processing [25][26].

2.2 Classification Approaches

After image processing, picture segmentation, and feature extractions, the output is usually a vectors or multi-vectors. There is a lot of space and subspace depiction. Each sub-component space's vector would be deleted. This feature vector is fed into the ANN. An artificial neural network has three layers of processings : inputs, hidden & outputs. The number of nodes in the input layer corresponds to the elements in the feature vector. The total number of nodes in the output layer equals the number of classes in ANN. By recognising the weight of the ANN result, the support vector technique unifies the outcomes of all artificial neutral networks and delivers a solution [27][28].

In terms of ANN SVM training time, the large database is an issue. The optimal weight is determined using SVM. The support vector mechanism must first be trained, with the SVM parameter adjusted to fit the training data and the problem. All of the artificial neutral networks that have been identified are brought together by the support vector technique. The research shows how to setup and process a sophisticated classification procedure that takes less time [29][30].

3. Recognition Phase (Say, IRIS)

In this section, we introduce an application for recognizing the irises of both male and female individuals. Typically, a comprehensive recognition system for any application can be broken down into various blocks, each serving its unique purpose. These blocks collectively contribute to the research work [31][32].

- Databases (general / generated one)
- Image acquisitions/capturings
- Gray scale conversions
- Identifications of ROI
- Pre-processings
- Re-sizings
- Boundary detections
- Segmentations
- Localizations
- Normalizations
- Noise removals
- Enhancements
- Feature processings
- Feature extractions
- Feature encodings
- Matchings
- Classifiers
- Testing
- Decision taking
- Authentication
- Identification
- Classification
- Recognition /Matched
- Non-recognition/Un-matched

4. Pre-Processing Approaches in DIP

In this section, the various concepts like canny edge detection methodologies, circular Hough transforms, some basic mathematical operations for image masking, region filling, etc... are used to obtain the enhanced iris part of the human eye & is being presented. This section is the starting step for the iris recognition & consists of couple of important works such as the image acquisition, image pre-processing, image segmentation, image

localization & image enhancement using mean/median filters, after which the iris features could be extracted [33][34].

4.1 Image Acquisition Approaches in DIP

This is the initial phase in the enrollment process. To gain access to the biometric system, an individual must have their iris image captured. This step is crucial in iris recognition systems because the quality of the images within the dataset significantly affects all subsequent steps, including feature extraction and matching algorithms. It's important to emphasize that capturing a high-resolution image is essential for obtaining accurate results. To achieve this, a specially designed imaging sensor (high-resolution camera) is used to capture the intricate details of the human eye's iris structure [35][36]. The main challenges in this step include dealing with non-uniform lighting conditions caused by variations in illumination.

Furthermore, careful consideration must be given to the viewpoint from which the image is captured. It's essential to ensure that there is no parallax or optical distortion. In most cases, iris acquisition involves using infrared illumination. The next step is iris localization, where the iris region within the image is identified. Iris boundaries are typically modeled as two circles, which may not necessarily be concentric [37]. The inner circle represents the papillary boundary or the inner iris boundary, while the outer circle corresponds to the limbic boundary or the outer iris boundary. The noise processing is often included in the segmentation stage of the recognition system. Possible sources of noise are eyelid occlusions, eyelash occlusions and specular reflections. It has to be noted that some of the above mentioned parameters are under constrained environments, but we are considering capturing of the iris pattern under unconstrained environments, which is the main topic of our research [38].

4.2 Image Pre-processing Approaches in DIP

Images acquired from the CASIA V4 database for unconstrained images are converted to grayscale in this preprocessing stage for computational efficiency and memory storage purposes. Preprocessing is a technique used to enhance the image's quality based on the specific application. To improve the accuracy of recognition algorithms and reduce irregularities, the original image needs to undergo preprocessing. This enhancement increases the chances of effectively capturing features.

The initial input from the digitizer often contains noise due to the eye's irregular movements and digitization errors compared to the actual input [39]. Preprocessing is primarily performed to reduce various types of noise and input image variability. The choice of the appropriate preprocessing algorithm for the scanned image depends on factors such as lighting conditions, image skew, image resolution, and image quality. Preprocessing operates at the level of transforming one image into another. It aims to compensate for low-quality or poorly scanned images by accurately removing irrelevant sections and efficiently extracting the iris region [40].

The iris image can be seen as a combination of foreground (logic high-white-1) and background (logic low-black-0), the iris image is considered as required foreground information. To enhance the iris image effectively and remove associated noises, the regions around it, some of the pre-processing techniques are used. Steps for pre-processing used in our work are as follows:

1. Resizing the iris image.
2. Contrast enhancement.
3. Gray scale conversion.

In short, images acquired from CASIA V4 database is converted to gray level in this pre-processing section. Instead of using the CASIA V4 DB, standard data sets (generated by us by taking a large number of human eye pictures) can also be used.

4.3 Iris localization Approaches in DIP

In the iris recognition system, the segmented iris often results in a low-contrast image that needs correction. The primary function of the iris localization module is to detect and delineate both the iris boundary and the pupil boundary. During this stage, iris localization identifies the outer and inner boundaries of the iris, effectively removing random noise, regional interference, and occlusions that can impair the matching process. Ultimately, the resulting iris image is normalized at the end of this process [41].

4.4 Edge detection approaches in DIP

The canny edges detections algorithm is utilized for detecting the edges. This algo finds the edges by looking for local maxima's in the gradient of an images. The gradients will be calculated utilizing the derivative of a Gaussian filter which also reduces the noise present in the detected iris image obtained from the facial image of the person captured by the camera. This method uses 2-threshold values to detect the strong and weak edges and will include the weak edge in the output only if they are connected to strong edge. The main advantage of this method is it is unlikely to be affected by noise and it is most likely that the true weak edges are detected.

Once, the edges of the ireis are detected, then the inner & outer boundaries of the iris are obtained utilizing the circular Hough Transforms (CHT). After finding the boundaries, we obtain ROI of iris. Then, the iris part is enhanced using the sharpening and special filtering techniques by using mean, median filters to get the clear features in the ROI. In the next phase, the features of the iris is extracted using the LBP feature extraction method. In the subsequent sections, an overview of the CED/CHT algos are presented [42].

Canny Edge Detection : The canny edge detector is one of the important edge detection operator that uses a multi-stage algorithm to detect a wide range of edges in images. Here, we are using it to segment the iris from the background. The process of canny edge detection algorithm can be broken down to 5 different steps [43].

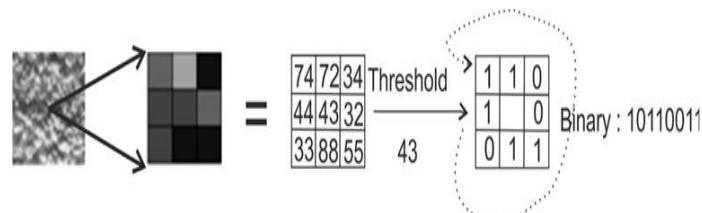
5. Feature Extractions

In this section, the various concepts of obtaining the features of the iris using Local Binary Pattern (LBP) method is being presented in a nut-shell. In our research work, the LBP is used to extract the features of the normalized/enhanced iris image, which is obtained from the previous section. LBP is “one of the feature extraction technique which uses the local binary patterns of the surrounding pixels & will give the descriptors of the image along with the histogram & this is used for extracting the features of the iris both for constrained as well as unconstrained images”. It's a straightforward but highly effective texture operator that categorizes an image's pixels by examining the pixel's neighborhood using a thresholding method and provides the output as a binary number [44].

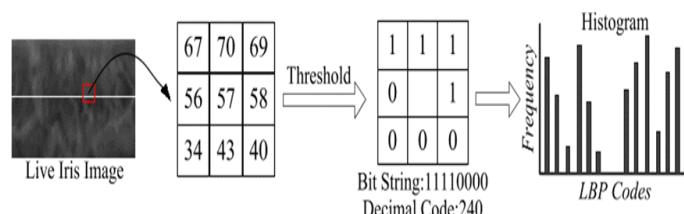
The LBP texture operator (which stands for grayscale invariant local texture operator) has gained popularity in many image processing applications because of its ability to discriminate effectively while remaining computationally simple, such as image retrieval, remote sensing, biomedical image analysis, motion analysis, including visual inspection, computer vision field, including industrial inspection, motion analysis, and face recognition, environmental modelling, and outdoor scene analysis etc.... to extract the entire iris template features. Also, it provides fast feature extraction and also texture classification [45].

The LBP operator serves as a unified method for combining the traditionally separate statistical and structural models of texture analysis. Its significant strength in real-world scenarios lies in its resilience to gradual gray-scale changes, such as those induced by varying illumination conditions. Additionally, its computational simplicity enables efficient image analysis in demanding real-time situations [46].

Local binary patterns is a type of feature used for feature extraction of the ROI & was first developed in the early part of the 90's. Ojala et.al. was one amongst them, where, The LBP operator was initially introduced to enhance local image contrast and as a grayscale invariant pattern measure, contributing extra information regarding the texture within images. Over time, it has proven to be a robust technique for extracting texture features. When combined with HOG, it further enhances detection performance, particularly on specific types of datasets [47].


Histogram of Oriented Gradients (HOG): The HOG feature calculates the occurrences of gradient orientations in specific image regions, providing us with extracted HOG features. These returned features contain details about the local shapes within an image. HOG is employed for tasks like classification, detection, and tracking. Texture carries crucial information about the iris surface's structure, which can be categorized as fine, coarse, or smooth. While humans can easily recognize and describe textures, developing texture-based features is vital for computer systems to understand and work with texture effectively [48].

A best example of an LBP operator is shown pictorially in the Fig. 3, which can be used for feature extraction of the ROI of an image (say, iris). The LBP operator makes use of a (3 x 3) matrix by using the adjacent pixels to find the output. In fact, the (3 x 3) matrix can be of n dimension also & depends upon the type of the application. The Fig. 4 shows that representation for a sample LBP image and its corresponding histogram [49].


Since LBP method works on a GSL (Figs. 3 & 4), so the original image should be transformed into a grayscale with the pixel values varying from 0 to 255. The conventional LBP code involves comparing a pixel in an image with its adjacent pixels. In this case, we extract iris texture features using binary patterns within a specific cell. The LBP operator assigns labels to the image pixels by analyzing the pixel's neighborhood and representing the outcome as a binary number, as depicted in Figures 3 and 4 [50].

To start with, to extract the feature of a particular ROI of an image, first, the feature vector has to be developed, which is done according to the following algo.

- Split the examined window into cells, for example, using a grid with cells, each containing 3 x 3 pixels.
- For every pixel within a cell, conduct a comparison between that pixel and its eight surrounding neighbors. These neighbors would be situated to the left-top, left-middle, left-bottom, right-top, and so on.
- This comparison process results in an 8-digit binary number, which is commonly converted to decimal for easier handling.
- Create a histogram for each cell by counting the frequency of each unique "number" occurrence, which corresponds to various combinations of pixels being smaller or greater than the center.
- If desired, normalize the histogram.
- Concatenate the normalized histograms from all cells.
- This concatenated histogram serves as the feature vector for the window.
- Store all these feature vectors in the database for future use.

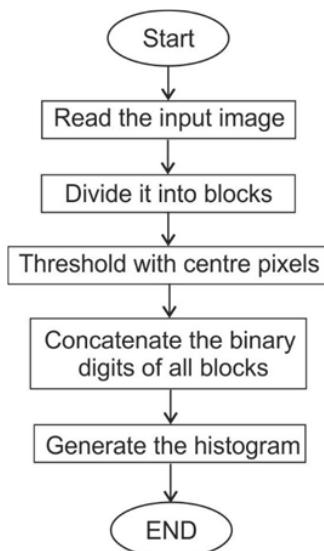

Fig. 3: LBP Operator Example

Fig. 4: LBP and its histogram

The LBP feature vector is shown in the Fig. 4 after the execution of the above algorithm. The LBP operator compares a neighborhood's gray values to its central value (g_c) and expresses the outcome as a binary code that characterizes the local texture pattern. The operator, denoted as $LBP(p, R)$, is defined by considering the symmetric neighbor set consisting of P members gp ($p = 0, \dots, p-1$) within a circular radius of R regions..

$$LBP_{p,R} = \sum_{p=0}^{P-1} s(g_p - g_c) 2^p \quad ; \quad s(x) = \begin{cases} 1, & x > 0 \\ 0, & o/w \end{cases}$$

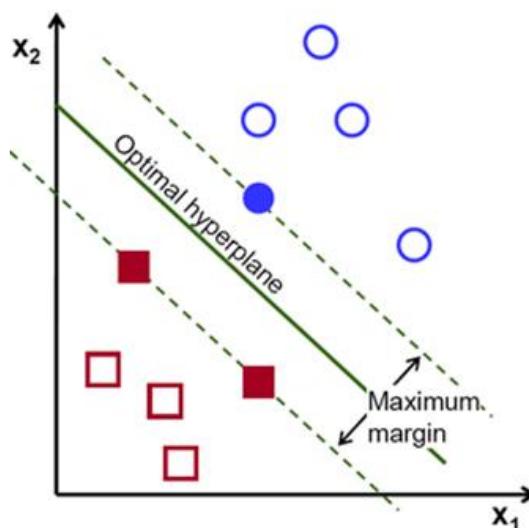
Fig. 5: LBP Operation Flow-Chart

In short, the LBP analysis steps could also be explained as follows. The close by 2-fold case executive is an image manager which changes an image into a show or image of entire number names depicting little scale appearance of the image. These names or their estimations, most by and large the histogram, are then used for further picture examination. The most comprehensively used adjustments of the executive are planned for monochrome still pictures yet it has been widened moreover for shading (multi-channel) pictures and highlights and volumetric data. An LBP histogram computation, the histograms has separate bin for the consistent outline, and every non-consistent patterns are allocated to the sole bin. The image is divided into number of blocks and it is threshold with the center pixel of the block and then the decimal number is obtained for each block. Then the histogram is generated for each block and the finally the histograms of each block is concatenated to obtain the single histogram of the entire image. The steps for the LBP algorithm used is shown below as

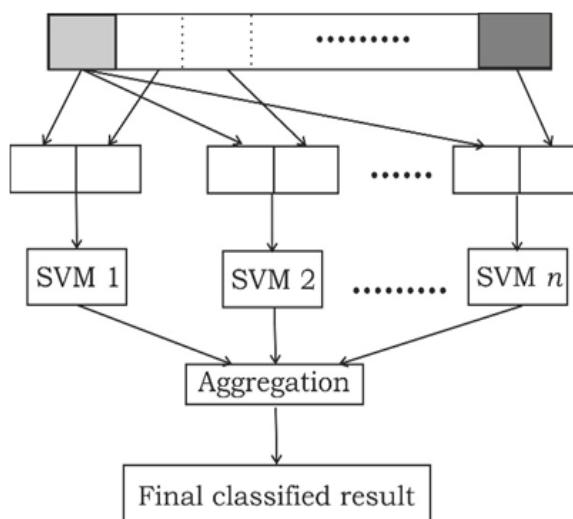
- Split the window into compartments for instance (3×3) for every compartment,
- On behalf of every pixel in the compartment, contrast the pixel among every one of that pixel eight neighbors,
- If the middle pixel esteem $>$ neighbor esteem then 1, otherwise 0,
- This gives the 8-digit parallel number,
- Change into decimal intended for comfort,
- Calculate histogram for the phone of the recurrence of every numeral happening, (connect little + more prominent than inside),
- Voluntarily standardize the histogram,
- Combine the histograms of all compartments, will give the element vector of window, & graphically shown in the form of flow-chart as given in the Fig. 5.

6. Different Classification Approaches in DIP

In this section, we employ the multi-SVM (Support Vector Machine) approach to classify the extracted iris features into recognized and unrecognized cases. Our classification method employs multi-SVM classifiers to enhance the accuracy of the iris recognition system. After feature extraction, a person can be reliably identified. Classification is the crucial final step in any biomedical image processing project. The classifier's role is to compare the given input data with the information stored in the database. Extracted features are used in the classification process. In automated classifiers, data is initially trained in the classifier and then stored in the database. When an input feature vector is provided to the classifier, it automatically compares it with the feature vectors in the database. Based on the result, it either recognizes or rejects the input feature vector.


To measure the similarity between two iris templates (test template and stored template), we utilize a matching metric. This metric yields different values when comparing templates from the same eye (intra-class

distribution) and when comparing templates from different individuals' eyes (inter-class distribution). These two distributions should provide distinct classifier separation values, allowing us to determine whether the two templates belong to the same or different individuals. SVMs are primarily used as two-class classifiers, offering a systematic approach to learning linear or non-linear decision boundaries for classifying data points. These data points fall into two categories: genuine or imposter.


The SVM classifier efficiently classifies these two categories using a hyperplane, as illustrated in Figures 6 and 7. The SVM constructs an optimal separating hyperplane between the classes in the dataset. This is achieved by maximizing the distance of each class from the hyperplane, employing the concept of a Gaussian radial basis kernel. The margin represents the maximum width in the hyperplanes, and support vectors in the data set are instrumental in separating these vectors. This process is equivalent to implementing structural risk minimization to ensure strong generalization. Finding the optimal hyperplane involves solving a constrained optimization problem using principles from quadratic programming.

7. Conclusions

In this research based review article, the researchers had presented a few reliable approaches for digital image processing of various applications in the field of science, engineering & technology.

Fig. 6: Support Vector Method Approach of Classification

Fig. 7: Multi-SVM concept of classifying the identified features

This research presents an examination of a variety of image processing strategies. An overview of all important information. Image processing techniques such as grayscale, segmentation, feature extraction, and classification are discussed in this article. Image segmentation using Otsu's technique and thresholding delivers a well-referenced segmentation solution even in photographs with noise content. These segments can display the contrast of shadows in paintings or the conceptual base patterns of some artworks. The SIFT methodology offers the best data extraction on picture datasets like leaf, fruit, and object, but the HSV colour and shape extraction approaches yield the greatest results on image datasets like flower and plant. The morphological operator is used to obtain a clear and noise-free image for processing. The method of identifying photos based on their content is known as image classification. The usage of ANN and SVM as image processing classifiers is investigated in this work. It also demonstrates how to detect edges. The canny edge detector outperforms other edge detectors with some optimistic spots. In comparison to other identification systems, this one is less vulnerable to noise, more adaptive, and recognises sharper edges. In general, the articles provide information on the most successful image processing methods.

References

- [1] Li, I-Hsum & Chen, Ming-Chang & Wang, Wen-June & Su, Shun-Feng & Lai, To-Wen. (2014). Mobile Robot Self-Localization System Using Single Webcam Distance Measurement Technology in Indoor Environments. *Sensors* (Basel, Switzerland). 14. 2089-109. 10.3390/s140202089.
- [2] Desmouliers C, Oruklu E, Aslam S, Saniie J, —Image and video processing platform for FPGAs using high level synthesis.
- [3] Liu Li-Feng, Hui-min M, Ming-quan L, “A FPGA and Zernike moment based Near-Field laser imaging detector multi-scale real time target reorganization algorithm”, IEEE conference publication 2010 on ISISE.
- [4] C. Fancourt, L. Bogoni, K. Hanna, Y. Guo, R. Wildes, N. Takahashi, and U. Jain, “Iris Recognition at a Distance”, Proc. of Int. Conf. on Audio and Video based Biometric Person Authentication, Vol. 3546, pp. 1-13, 2005.
- [5] Zhou Z., Y.Z. Du, et.al., “Transforming Traditional Iris Recognition Systems to Work in Non-ideal Situations”, *IEEE Trans. on Industrial Electronics*, Vol. 56, No. 8, pp. 3203-3213, 2009.
- [6] Proenca H., “An iris recognition approach through structural pattern analysis methods”, *Expert Systems*, Vol. 27, No. 1, pp. 6-16, 2010.
- [7] Yu Chen, “A high efficient biometrics approach for unconstrained iris segmentation and recognition”, Ph.D. Thesis, College of Engineering and Computing, Florida International University, 2010.
- [8] Chun-Wei Tan and Ajay Kumar, “Towards online iris and periocular recognition under relaxed imaging constraints”, *IEEE Trans. on Image Processing*, Vol. 22, No. 10, pp. 3751-3765, Oct. 2013
- [9] David Marius Daniel, Borda Monica, “Person Authentication Technique Using Human Iris Recognition”, 978-1-4244-8460-7/10/\$26.00 ©2010 IEEE Conf. Paper, pp. 265-268, 2010.
- [10] Sim Hiew Moi, Hishammuddin Asmuni, Rohayanti Hassan and Razib M. Othman, “A Unified Approach for Unconstrained Off-Angle Iris Recognition”, Int. Symp. on Biometrics and Security Technologies (ISBAST), 978-1-4799-6444-4/14/\$31.00 ©2014 IEEE, pp. 39-44, 2014.
- [11] Shaaban A. Sahmoud & Ibrahim S. Abuhaiba, “Efficient iris segmentation method in unconstrained environments”, Elsivier’s Science Direct Jr. of Pattern Recognition, Vol. 46, pp. 3174–3185, 2013.
- [12] Peihua Li, Hongwei Ma, “Iris Recognition in non-ideal imaging conditions”, *Pattern Recognition Letters*, pp. 1-9, Apr. 2012.
- [13] Mahmoud Mahlouji1 & Ali Noruzi, “Human Iris Segmentation for Iris Recognition in Unconstrained Environments”, *IJCSI International Journal of Computer Science Issues*, ISSN (Online): 1694-0814, Vol. 9, Issue 1, No. 3, pp. 149-155, Jan. 2012.
- [14] Navjot Kaur & Mamta Juneja, “A Novel Approach for Iris Recognition in Unconstrained Environment”, *Journal of Emerging Technologies In Web Intelligence*, Academy Publishers, Vol. 6, No. 2, pp. 243-246, May 2014.

[15] Yao-Hong Tsai, "A Weighted Approach to Unconstrained Iris Recognition", World Academy of Science, Engineering and Technology International Journal of Computer and Information Engineering, ISSN:1307-6892, Vol. 8, No. 1, pp., 30-33, 2014.

[16] Kaushik Roy, Prabir Bhattacharya, and Ching Y. Suen, "Unideal Iris Segmentation Using Region-Based Active Contour Model", Edited by A. Campilho and M. Kamel (Eds.), ICIAR 2010, Part II, LNCS 6112, © Springer-Verlag Berlin Heidelberg, Germany, pp. 256–265, 2010.

[17] Anis Farihan Mat Raffei, Hishammuddin Asmuni A., Rohayanti Hassan, Razib M.Othman, "Feature extraction for different distances of visible reflection iris using multiscale sparse representation of local Radon transforms", Elsivier's Science Direct Jr. of Pattern Recognition, Vol. 46, pp. 2622–2633, 2013.

[18] Farmanullah Jan, "Segmentation and localization schemes for non-ideal iris biometric systems", Elsivier's Science Direct Jr. of Signal Processing, Vol. 133, pp. 192–212, 2017.

[19] Kwang Yong Shin, Gi Pyo Nama, Dae Sik Jeong, Dal Ho Cho, Byung Jun Kang, Kang Ryoung Park, Jaihie Kim, "New iris recognition method for noisy iris images", Elsevier Science Direct's Pattern Recognition Letters, Vol. 33, pp. 991–999, 2012.

[20] Gil Santos & Edmundo Hoyle, "A fusion approach to unconstrained iris recognition", Elsevier Science Direct's Pattern Recognition Letters, Vol. 33, pp. 984–990, 2012.

[21] Michal Haindl, Mikuláš Krupička, "Unsupervised detection of non-iris occlusions", Elsevier Science Direct's Pattern Recognition Letters, Vol. 57, pp. 60-65, 2015.

[22] Mahmut Karakaya, "A study of how gaze angle affects the performance of iris recognition", Elsevier Science Direct's Pattern Recognition Letters, Vol. 82, pp. 132–143, 2016.

[23] Soubhagya Sankar Barpanda, Banshidhar Majhi, PankajKumar S, "Region based feature extraction from non-cooperative iris images using triplet half-band filter bank", Elsevier Science Direct's Jr. of Optics & Laser Technology, Vol. 72, pp. 6–14, 2015.

[24] Hugo Proença & João C. Neves, "Visible-wave length iris/periocular imaging and recognition surveillance environments", Elsevier Science Direct's Jr. of Image and Vision Computing, Vol. 55, pp. 22–25, 2016.

[25] Yang Hu, Konstantinos Sirlantzis, Gareth Howells, "A novel iris weight map method for less constrained iris recognition based on bit stability and discriminability", Elsevier Science Direct's Jr. of Image and Vision Computing, Vol. 58, pp. 168-180, Feb. 2017.

[26] Jing Liu, Zhenan Sun, Tieniu Tan, "Distance metric learning for recognizing low-resolution iris images", Elsevier Science Direct's Jr. of Neurocomputing, Vol. 144, pp. 484–492, Feb. 2014.

[27] Yunioi Alvarez - Betancourt, Miguel Garcia – Silvente, "A key points – based feature extraction method for iris recognition under variable image quality conditions", Elsevier Science Direct's Jr. of Knowledge-Based Systems, Vol. 92, pp. 169–182, 2016.

[28] Narsi Reddy, Ajita Rattani, Reza Derakhshani, "A Robust Scheme for Iris Segmentation in Mobile Environment", DOI : 978-1-5090-0770-7/16/\$31.00 ©2016 IEEE, 2016 IEEE Symposium on Technologies for Homeland Security (HST), Florida, USA.

[29] Andri Santoso, Shabrina Choirunnisa, Bima Prihasto, and Jia-Ching Wang, "Improving iris image segmentation in unconstrained environments using NMF-based approach", 2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), 978-1-5090-2073-7/16/\$31.00 ©2016 IEEE, 27-29 May 2016.

[30] Bo Liu, Siew-Kei Lam, Thambipillai Srikanthan and Weiqi Yuan, "Utilizing dark features for iris recognition in less constrained environments", Fourth IEEE International Symposium on Parallel Architectures, Algorithms and Programming, Tianjin, China, ISBN 978-0-7695-4575-2/11 \$26.00 © 2011 IEEE, DOI 10.1109/PAAP.2011.51, IEEE Computer Society, pp. 110-114, 2011.

[31] K.V. Arya, Anurag Gupta, Gyanendra Kumar, Piyush Singhal, "A Novel Approach to Minimize the Impact of Non Ideal Samples in Iris Recognition System", Third IEEE International Conference on Computer and Communication Technology, 978-0-7695-4872-2/12 \$26.00 © 2012 IEEE, DOI 10.1109/ICCCCT.2012.77, IEEE Computer Society, pp. 352-356, Allahabad, U.P., India, 23-25 Nov. 2012.

[32] Pavithra G., Dr. T.C Manjunath, Shazia Anjum, "Efficient segmentation of the fetal ultrasound image using smoothing algorithm", Int. Journal of Innovative Research in Computer & Communication Engg., IJIRCCE, Certificate No. V3I04C272, paper ID V30404190, ISSN(Online): 2320-9801, ISSN (Print): 2320-9798, IF 4.447 (2014), IF 7.194 (2019), DOI 10.15680/ijircce.2015.0304106, Vol. 3, Issue 4, pp. 3512-3517, April-May 2015

[33] Pavithra G., Chaitra J. Gowda, Dr. T.C. Manjunath, "A new methodology of multi-object tracking in the image processing world", Int. Journal of Emerging Tech. & Research (IJETR), IF 0.997, ISSN (Online) : 2347 – 5900, ISSN (Print) : 2347 – 6079, Paper id IJETRV2I3436, Publisher : Innovation & Emerging Technology Group, Vol. 2, Issue 3, pp. 48-49, May-June 2015.

[34] Pavithra G., Chaitra J. Gowda, Dr. T.C. Manjunath, "Investigation of Multi-object Tracking With Data Organization and Path Controlling in images", Int. Journal of Scientific Research in Comp. Sci. Appl. & Management Studies (IJSRCSAMS), UGC approved Journal, Indexing by SIS, ISSN 2319-1953, IF 0.342, GIG 0.465, Global Impact Factor: 0.465, Vol. 4, Issue 3, May 2015

[35] Pavithra G., Dr. T.C. Manjunath, M.R. Prasad, "A Review of the Optical Character Recognition Methodology in Image Processing Techniques", Institute for Engineering Research And Publication (IFERP)'s International Journal of Engineering Research in Electronics and Communication Engineering (IJERECE), ISSN (Online) 2394-6849, indexed by Google Scholar, Thomson Reuters ID, ORCID Research ID, Impact Factor 3.689, paper id 2, Vol. 3, Issue 11, pp. 5-8, Nov. 2016, DOI : 01.1617/vol3iss11pid482,

[36] M.R. Prasad, Pavithra G., Dr. T.C. Manjunath, "A Novel Method of Digitization & Noise Elimination of Digital Signals Using Image Processing Concepts", Institute for Engineering Research And Publication (IFERP)'s International Journal of Engineering Research in Electronics and Communication Engineering (IJERECE), ISSN (Online) 2394-6849, DOI : 01.1617/vol3iss11pid488, indexed by Google Scholar, Thomson Reuters ID, ORCID Research ID, Impact Factor 3.689, paper id 8, Vol. 3, Issue 11, pp. 38-44, Nov. 2016.

[37] Pavithra G., Chaitra J. Gowda, Dr. T.C. Manjunath, "A new methodology of multi-object tracking in the image processing world", Int. Journal of Emerging Tech. & Research (IJETR), IF 0.997, ISSN (Online) : 2347 – 5900, ISSN (Print) : 2347 – 6079, Paper id IJETRV2I3436, Publisher : Innovation & Emerging Technology Group, Vol. 2, Issue 3, pp. 48-49, May-June 2015.

[38] Pavithra G., Chaitra J. Gowda, Dr. T.C. Manjunath, "Investigation of Multi-object Tracking With Data Organization and Path Controlling in images", Int. Journal of Scientific Research in Comp. Sci. Appl. & Management Studies (IJSRCSAMS), UGC approved Journal, Indexing by SIS, ISSN 2319-1953, IF 0.342, GIG 0.465, Global Impact Factor: 0.465, Vol. 4, Issue 3, May 2015

[39] Pavithra G., Dr. T.C. Manjunath, M.R. Prasad, "A Review of the Optical Character Recognition Methodology in Image Processing Techniques", Institute for Engineering Research And Publication (IFERP)'s International Journal of Engineering Research in Electronics and Communication Engineering (IJERECE), ISSN (Online) 2394-6849, indexed by Google Scholar, Thomson Reuters ID, ORCID Research ID, Impact Factor 3.689, paper id 2, Vol. 3, Issue 11, pp. 5-8, Nov. 2016.

[40] M.R. Prasad, Pavithra G., Dr. T.C. Manjunath, "A Novel Method of Digitization & Noise Elimination of Digital Signals Using Image Processing Concepts", Institute for Engineering Research And Publication (IFERP)'s International Journal of Engineering Research in Electronics and Communication Engineering (IJERECE), ISSN (Online) 2394-6849, DOI : 01.1617/vol3iss11pid488, indexed by Google Scholar, Thomson Reuters ID, ORCID Research ID, Impact Factor 3.689, paper id 8, Vol. 3, Issue 11, pp. 38-44, Nov. 2016.

[41] Dr. T.C. Manjunath, Dr. K.N. Vijaykumar, Pavithra G., "Separation of foreground & background objects in image processing", National Journal of Applied Engineering and Technologies (JAET), ISSN-2278-1722, Paper id AET-0014, Vol. 1, Issue 1, pp. 60 - 65, April 2012, India.

[42] Dr. T.C. Manjunath, Pavithra G., Suhasini V.K., "Lossless compression in artificial images", National Journal of Applied Engineering and Technologies (JAET), ISSN-2278-1722, Paper id AET-0015, Vol. 1, Issue 1, pp. 66 - 71, April 2012, India.

[43] Rahimunnisa Nagma, Pavithra G., Dr. T.C.Manjunath, "Traffic aware video coding using scalable video coding (SVC)", Second Int. Conf. on Recent Trends in Signal Processing, Image Processing & VLSI (ICrSIV-2015), Organized by ECE Dept. of DBIT & Research Publishing Services, Don Bosco Inst. of Tech., Kumbalgod, Bangalore, Karnataka, Paper id IP-49, 15-16 May 2015.

[44] Dr. Arunkumar G, Dr. T.C.Manjunath, Dr. Pavithra G., "Determination of the shapes of the objects in images using special type of area descriptors", TEQUIP Sponsored Int. National Conf. on CS & Engg. (ICCSE-20), Dept. of ECE, KLE's Sheshagiri College of Engg. & Tech., Belagavi, Karnataka, Paper id ESSP-36, pp. 138, Mar. 1-3, 2020.

[45] Dr. Arunkumar G, Dr. T.C.Manjunath, Dr. Pavithra G., "Determination of the shapes of the objects in images using special type of area descriptors", TEQUIP Sponsored Int. National Conf. on CS & Engg. (ICCSE-20), Dept. of ECE, KLE's Sheshagiri College of Engg. & Tech., Belagavi, Karnataka, Paper id ESSP-36, pp. 138, Mar. 1-3, 2020.

[46] D.J. Prithvi Madhav, Pavithra G., Dr. T.C.Manjunath, "Novel developments in biometric recognition of human beings using retinal eye images with the help of Fractal Dimension method", 10th Annual KSTA National Conference, Decennial Celebration of Science & Technology for future of Humanity (Sponsored by IIA, DRSC, ISRO, KSCST, Start up Karnataka, KSTePS) Dept. of Science & Technology, Govt. of Karnataka, Reva University, Kattigenahalli, Bangalore-64, Karnataka, ISBN 978-81-936187-4-5, Paper No. ES-10, Sl. No. 233, pg. 148, 18-19 Jan. 2019.

[47] Ankita V., Pavithra G., Dr. T.C.Manjunath, "Design, analysis, implementation of a force base sensor for aerospace engineering", Journal of Applied Engg. & Technologies (JAET), ISSN 2278-1722, Vol. 5, Issue 1, pp. 101-103, April 2017,

[48] Sinha, Professor G & Thakur, Kavita & Vyas, Prafull. (2018). Research Impact of Astronomical Image Processing. Journal of Luminescence. 7.

[49] Ankita V., Pavithra G., Dr. T.C.Manjunath, "Design, analysis, implementation of a force base sensor for aerospace engineering", Third International Conference on Recent Advances and Challenges in Engineering and Management (RACEM-2016), Technically co-sponsored by ISTE, Govt. of Maharashtra, CSI, Bio-medical Engineering Society of India, Global Advanced Research Publication, Vidyalankar Institute of Technology (VIT), Wadala, Mumbai, Maharashtra, India, Session 4B, Embedded and Control Systems, 02.30-03.30 pm (Venue: M-101), paper no. 11/144, pp. 24, 22 Dec. 2016

[50] Prajwal Bhat, Dr. T.C.Manjunath, Pavithra G., "Reusable Rockets and Interplanetary Transportation in Space Communications", 8th National Conference on Advanced Techniques in Electrical & Electronics Engg. (NCATEE-2017), Organized by Dept. of EEE, Shri Jagadguru Balagangadharanatha Institute of Tech. (SJBIT), BGS Health & Education City, Bangalore, Karnataka, India, Paper id 68, pp. 93-96, 10 May 2017.

[51] Shashank S., Kushal K., Abhay Surya Shankar, Madan Kumar G., Dr. Pavithra G., Dr. Sindhu Sree M., Padmavathy M., Dr. T.C. Manjunath, "RFID based attendance system with SMS Alert", Scopus Journal Q3, Schimago Ranking SJR 2022 0.32, H-Index 24, Tuijin Jishu/Journal of Propulsion Technology, ISSN : 1001-4055, Vol. 44, No. 3, pp. 774 – 782, Jul. - Sept. 2023.

[52] Abhishek, Sujith M.S., Jeevan D., P. Kamalesh, Dr. Sindhu Sree M., Dr. Pavithra G., Dr. T.C. Manjunath, "Design & Development of a Table Assisted Robotic Arm", Scopus Journal Q3, Schimago Ranking SJR 2022 0.32, H-Index 24, Tuijin Jishu/Journal of Propulsion Technology, ISSN : 1001-4055, Vol. 44, No. 3, pp. 818 – 822, Jul. - Sept. 2023.

[53] Apeksha U., Chithrashree G.S., Divya N.M., Shalmali S. Mankikar, Dr. Sindhu Sree M., Dr. Pavithra G., Dr. T.C. Manjunath, "Wireless LoRa Communication Between Two Arduino Uno for Military Application in Soldier Tracking", Scopus Journal Q3, Schimago Ranking SJR 2022 0.32, H-Index 24, Tuijin Jishu/Journal of Propulsion Technology, ISSN : 1001-4055, Vol. 44, No. 3, pp. 768 – 773, Jul. - Sept. 2023.

[54] Akarsh Kesharwani, Ayush P. Chaudhary, Bhanu Pratap Singh, Ved Kumar, Padmavathi M., Dr. Pavithra G., Dr. Sindhu Sree M., Dr. T.C. Manjunath, "A Study on Hand Motion Controlled Robotic Arm", Scopus Journal Q3, Schimago Ranking SJR 2022 0.32, H-Index 24, Tuijin Jishu/Journal of

Propulsion Technology, ISSN : 1001-4055, Vol. 44, No. 3, pp. 812 – 817, Jul. - Sept. 2023.

[55] Leena Jeyakumar, Prerana Aithal, Vismitha R., Pradhan Aithal, Dr. Pavithra G., Dr. Sindhu Sree M., Dr. T.C. Manjunath, “Development of Smart Bridge – Automatic Height Increase When Floodings Take Place”, Scopus Journal Q3, Schimago Ranking SJR 2022 0.32, H-Index 24, Tuijin Jishu/Journal of Propulsion Technology, ISSN : 1001-4055, Vol. 44, No. 3, pp. 763 – 767, Jul. - Sept. 2023.

[56] Sushanthi Raj, Manohar R., Bhuvan G.S., Deepthi. S.R., Dr. Pavithra G., Dr. Sindhu Sree M., Dr. T.C. Manjunath, “Design and Development of Obstruction Detection and Removal Bot”, Scopus Journal Q3, Schimago Ranking SJR 2022 0.32, H-Index 24, Tuijin Jishu/Journal of Propulsion Technology, ISSN : 1001-4055, Vol. 44, No. 3, pp. 807 – 811, Jul. - Sept. 2023.

[57] Anagha, Jhanavi M., Khushi M.S., Nithin Kumar S., Dr. Sindhu Sree M., Dr. Pavithra G., Dr. T.C. Manjunath, “Paralysed Patient Healthcare Monitoring Device”, Scopus Journal Q3, Schimago Ranking SJR 2022 0.32, H-Index 24, Tuijin Jishu/Journal of Propulsion Technology, ISSN : 1001-4055, Vol. 44, No. 3, pp. 758 – 762, Jul. - Sept. 2023.

[58] Ashmeet Singh, Harshit Goenka, Prakhar Sahu, Venkatesh L., Pamavathi M., Dr. Pavithra G., Dr. Sindhu Sree M., Dr. T.C. Manjunath, “Development of an Automatic Fire Extinguisher”, Scopus Journal Q3, Schimago Ranking SJR 2022 0.32, H-Index 24, Tuijin Jishu/Journal of Propulsion Technology, ISSN : 1001-4055, Vol. 44, No. 3, pp. 802 – 806, Jul. - Sept. 2023.

[59] Vaishnavi Patil, Dr. Pavithra G., Dr. T.C. Manjunath, “Design, Development of a Diversified Implementation of a Supervisory Control And Data Acquisition based VLSI System (SCADA) framework Utilizing Microcontroller based Programmable Logic Controllers”, Scopus Journal Q3, Schimago Ranking SJR 2022 0.32, H-Index 24, Tuijin Jishu/Journal of Propulsion Technology, ISSN : 1001-4055, Vol. 44, No. 3, pp. 879 – 890, Jul. - Sept. 2023.

[60] Kavya P., Sanjana S., Harika, Teju R., Dr. Pavithra G., Dr. Sindhu Sree M., Dr. T.C. Manjunath, “Design & Development of Drones Using Radio Frequency Controllers”, Scopus Journal Q3, Schimago Ranking SJR 2022 0.32, H-Index 24, Tuijin Jishu/Journal of Propulsion Technology, ISSN : 1001-4055, Vol. 44, No. 3, pp. 707 – 710, Jul. - Sept. 2023.

[61] S.G. Swathi, Aliya Bhandari, Srushti M. B. Kavya A., Dr. Pavithra G., Dr. Sindhu Sree M., Dr. T.C. Manjunath, “Voice Control Robot – Design & Development for Various Domestic Applications”, Scopus Journal Q3, Schimago Ranking SJR 2022 0.32, H-Index 24, Tuijin Jishu/Journal of Propulsion Technology, ISSN : 1001-4055, Vol. 44, No. 3, pp. 791 – 801, Jul. - Sept. 2023.

[62] Vaishnavi Patil, Dr. Pavithra G., Dr. T.C. Manjunath, “Design of Smart Wheelchair For Disabled (Handicapped) Persons Using Real Time Embedded Systems & Internet Of Things Approach”, Scopus Journal Q3, Schimago Ranking SJR 2022 0.32, H-Index 24, Tuijin Jishu/Journal of Propulsion Technology, ISSN : 1001-4055, Vol. 44, No. 3, pp. 871 – 878, Jul. - Sept. 2023.

[63] Biswendo Biswas, Madan V.L., Rakesh B.S., Prathik Chandrapal, Dr. Pavithra G., Dr. Sindhu Sree M., Dr. T.C. Manjunath, “Development of remotely operated military purpose aerial vehicles”, Scopus Journal Q3, Schimago Ranking SJR 2022 0.32, H-Index 24, Tuijin Jishu/Journal of Propulsion Technology, ISSN : 1001-4055, Vol. 44, No. 3, pp. 638 – 641, Jul. - Sept. 2023.

[64] Akanksha Dash, Amrutha G., Krutika S. Ganpur, Sneha Chatter, Dr. Pavithra G., Dr. Sindhu Sree M., Dr. T.C. Manjunath, “Obstacle Avoiding Robotic Car Using Arduino with Bluetooth and Voice Control”, Scopus Journal Q3, Schimago Ranking SJR 2022 0.32, H-Index 24, Tuijin Jishu/Journal of Propulsion Technology, ISSN : 1001-4055, Vol. 44, No. 3, pp. 783 – 790, Jul. - Sept. 2023.

[65] Vaishnavi Patil, Dr. Pavithra G., Dr. T.C. Manjunath, “Simulation & design of a VLSI embedded system using Verilog Coding with Modelsim approach in FPGA scenarios for AI applications in automotive sectors”, Scopus Journal Q3, Schimago Ranking SJR 2022 0.32, H-Index 24, Tuijin Jishu/Journal of Propulsion Technology, ISSN : 1001-4055, Vol. 44, No. 3, pp. 862 – 870, Jul. - Sept. 2023.

[66] Manoj Kumar J., Arpitha N., Darshan R., Narendra Babu C.B., Dr. Pavithra G., Dr. T.C. Manjunath, “Design & Development of A Multi-Functional Robot (MOB) For Military, Mining Applications And Disaster Rescue Operations In The Country – A Prototype”, International Conference on Interdisciplinary Innovative Research and Studies (ICIIRS-2023) Jointly organized by JS University, Shikohabad and International Association of Research and Developed Organization with the

collaboration of Conference World at International Centre Goa, Dona Paula, Goa, India, Paper Id 62, ISBN 978-93-91535-45-2, pp. 32-48, 1 April 2023.

[67] Nandini C.R., Madhu Shree K., Kumari Ayushi, Arpitha H.K., Jyothi Gutti, Keerthana M., Dr. Pavithra G., Dr. T.C.Manjunath, "A case study on circle detection & edge detection in gray scale images using digital image processing technique", International Conference on Interdisciplinary Innovative Research and Studies (ICIIRS-2023) Jointly organized by JS University, Shikohabad and International Association of Research and Developed Organization with the collaboration of Conference World at International Centre Goa, Dona Paula, Goa, India, Paper Id 61, ISBN 978-93-91535-45-2, pp. 26-31, 1 April 2023.

[68] Niveditha K.M., Shrushti Pattar, Dr. Sindhushree M., Dr. Pavithra G, Dr. T.C.Manjunath, "Novel sensor based multi-layered mask design for usage by the human beings during the pandemic times", International Conference on Interdisciplinary Innovative Research and Studies (ICIIRS-2023) Jointly organized by JS University, Shikohabad and International Association of Research and Developed Organization with the collaboration of Conference World at International Centre Goa, Dona Paula, Goa, India, Paper Id 59, ISBN 978-93-91535-45-2, pp. 16-25, 1 April 2023.

[69] Manoj Kumar J., Arpitha N., Darshan R., Narendra Babu C.B., Dr. Pavithra G., Dr. T.C.Manjunath, "Design & Development of A Multi-Functional Robot (MOB) For Military, Mining Applications And Disaster Rescue Operations In The Country – A Prototype", Journal of Semiconductor Optoelectronics, Scopus Indexed Journal, SCI Q4, Vol. 41, No. 12, ISSN:1001-5868, pp. 1404-1419, Dec. 2022.

[70] Nandini C.R., Madhu Shree K., Kumari Ayushi, Arpitha H.K., Jyothi Gutti, Keerthana M., Dr. Pavithra G., Dr. T.C.Manjunath, "A case study on circle detection & edge detection in gray scale images using digital image processing technique", Journal of Semiconductor Optoelectronics, Scopus Indexed Journal, SCI Q4, Vol. 41, No. 12, ISSN:1001-5868, pp. 1398-1403, Dec. 2022.

[71] Niveditha K.M., Shrushti Pattar, Dr. Sindhushree M., Dr. Pavithra G, Dr. T.C.Manjunath, "Novel sensor based multi-layered mask design for usage by the human beings during the pandemic times", Journal of Semiconductor Optoelectronics, Scopus Indexed Journal, SCI Q4, Vol. 41, No. 12, ISSN:1001-5868, pp. 1388-1397, Dec. 2022.

[72] Dr. Prakash Kuravatti, Dr. Naveen S.M., Dr. P. Aruna, Dr. Archana H.R., Dr. Surendra H.H., Dr. Jyothi A.P., Dr. C.M. Joseph, Dr. Pavithra G., Dr. Sindh Sree M., "Design & development of a nano antenna using chemical decomposition methods in IoT based nano-technology systems for energy harvesting for telecommunication sectors with AI-ML approach", Scopus Indexed Journal Article, SCImago Journal & Country Rank - Quartile 3 (Q3), SJR 2022 Rating 0.25, Journal of European Chemical Bulletin, Section A-Research paper, e-ISSN 2063-5346, H-Index 11, Vol. 12, Special Issue 4, pp. 13638-13646, 2023

[73] Aishwarya A., Avantika P., Indhudhara G.I. Kavya U., Dr. Sindh Sree M., Dr. Pavithra G., Dr. T.C.Manjunath, "REFES - Robot Engineering Based Fire Evacuation System", Scopus Indexed Journal Article, SCImago Journal & Country Rank - Quartile 3 (Q3), SJR 2022 Rating 0.25, Journal of European Chemical Bulletin, Section A-Research paper, e-ISSN 2063-5346, H-Index 11, Vol. 12, Special Issue 4, pp. 13630-13637, 202

[74] Charan Reddy N., Gopinath C., Jayashree K., Revati Hiremath, Dr. Pavithra G., Dr. Sindh Sree M., Dr. T.C.Manjunath, "The AQUABOT : human body detection underwater, water quality monitoring & marine boundary surveillance using concepts of artificial intelligence", Scopus Indexed Journal Article, SCImago Journal & Country Rank - Quartile 3 (Q3), SJR 2022 Rating 0.25, Journal of European Chemical Bulletin, Section A-Research paper, e-ISSN 2063-5346, H-Index 11, Vol. 12, Special Issue 4, pp. 13621-13629, 2023

[75] Lohit Nimbagal, Rahul M., Sneha N. Teggi, Sushmitha M.R., Dr. Pavithra G., Dr. Sindh Sree M., Dr. T.C.Manjunath, "Design & development of a lunar rover (chandrayan type) for Indian Space applications", Scopus Indexed Journal Article, SCImago Journal & Country Rank - Quartile 3 (Q3), SJR 2022 Rating 0.25, Journal of European Chemical Bulletin, Section A-Research paper, e-ISSN 2063-5346, H-Index 11, Vol. 12, Special Issue 4, pp. 13614-13620, 2023

[76] J. Pavan Raju, Amrutha Bhat, Sindh S., Sushmitha A.C., Dr. Sindh Sree M., Dr. Pavithra G., Dr. T.C.Manjunath, "Conceptual development of nano route based synthetic RBC using chemical composition concepts", Scopus Indexed Journal Article, SCImago Journal & Country Rank - Quartile 3

(Q3), SJR 2022 Rating 0.25, Journal of European Chemical Bulletin, Section A-Research paper, e-ISSN 2063-5346, H-Index 11, Vol. 12, Special Issue 4, pp. 13607-13613, 2023

[77] Kavyanjali R, Mo Imran, Nalliboyina Yuva Raja Phani Kumar, Maria Dayana L.N., Dr. Pavithra G., Dr. Sindhu Sree M., Dr. T.C. Manjunath, "Design and implementation of smart prosthetic hand using Artificial Intelligence", Scopus Indexed Journal Article, SCImago Journal & Country Rank - Quartile 3 (Q3), SJR 2022 Rating 0.25, Journal of European Chemical Bulletin, Section A-Research paper, e-ISSN 2063-5346, H-Index 11, Vol. 12, Special Issue 4, pp. 13598-13606, 2023

[78] Joseph Walter A., Akshay D. Akamanchi, C. Karthik, Mangala Shashank, Dr. Pavithra G., Dr. T.C. Manjunath, "Design and development of terrain globetrotter BoT for different types of engg. Applications", Scopus Indexed Journal Article, SCImago Journal & Country Rank - Quartile 3 (Q3), SJR 2022 Rating 0.25, Journal of European Chemical Bulletin, Section A-Research paper, e-ISSN 2063-5346, H-Index 11, Vol. 12, Special Issue 4, pp. 13591-13597, 2023

[79] Bindu K.R., Ashwini M., Divya K.K., Aishwarya C., Dr. Sindhu Sree M., Dr. Pavithra G., Dr. T.C. Manjunath, "Design & development of intelligent ambulance concept – AI and human interface technology", Scopus Indexed Journal Article, SCImago Journal & Country Rank - Quartile 3 (Q3), SJR 2022 Rating 0.25, Journal of European Chemical Bulletin, Section A-Research paper, e-ISSN 2063-5346, H-Index 11, Received: 10.05.2023, Revised: 29.05.2023, Accepted: 09.06.2023, Vol. 12, Special Issue 9, pp. 177-188, 2023.

[80] V.K. Suhasini, Prerana B. Patil, K.N. Vijaykumar, S.C. Manjunatha, T. Sudha, P. Kumar, Gopalaiah Ramachandraiah, G. Pavithra, T.C. Manjunath, "Detection of Skin Cancer using Artificial Intelligence & Machine Learning Concepts," 2022 IEEE 4th International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA), Goa, India, pp. 343-347, 08-09 October 2022