
Semi-Totally ξ -Continuous Maps on ξ-topological spaces

 $^{[1]}$ Arvind Kumar Sharma, $^{[2]}$ Mudassir Ahmad, $^{[3]}$ Mohammad Javed Alam, $^{[4]}$ Nazir Ahmad Ahengar, $^{[5]}$ Sanjay Bhajanker

[1] [4] Department of Mathematics, School of Engineering, Pimpri Chinchwad University, Pune-412106, India

^[2]Department of Mathematics, School of Chemical Engineering and Physical Sciences, Lovely Professional University Punjab-144411, India

[3] Department of Mathematics, School of Engineering, Presidency University Bangaluru-560064, India

^[5]Department of Physics, Govt. Agrasen College Bilha, Bilaspur, C.G. – 495224 India

Email: [1]arvind02bhanu@gmail.com, [2]mdabstract85@gmail.com, [3]mohd.javedalam@presidencyuniversity.in, [4]nzrhmd97@gmail.com, [5]sanjaybhajanker@hotmail.com

Abstract: In this paper we have introduced and studied the concepts of semi-totally ξ -continuous maps and pre-totally ξ -continuous maps in ξ -topological spaces and all the possible relationships of these maps have been discussed and established by making the use of several related counter examples.

Keywords: ξ -continuous maps, semi-totally ξ -continuous maps, pre-totally ξ -continuous maps

1. Introduction

Hatir and Noiri [12] studied d-b-continuous functions and obtained several results related to continuity. Levine [15] introduced weakly continuous functions and established some new results. Egenhofer [9] discussed the very useful concept for binary topological relations. Gevorgyan [11] studied the group of continuous binary operations on a topological space and established its relationship with the group of homeomorphisms. Chen et al. [6] demonstrated the dynamics on binary relations over topological spaces. Benchalli S.S and Umadevi I Neeli Nour T.M [4, 20] studied the concept of totally semi-continuous functions and semi-totally continuous functions in topological spaces and verify the certain properties of the concept.

Nithyanantha and Thangavelu [19] introduced the concept of binary topology between two sets and investigate some of the basic properties, where a binary topology from X to Y is a binary structure satisfying certain axioms that are analogous to the axioms of topology. Jamal M. Mustafa [13] studied binary generalized topological spaces and investigate the various relationships of the maps so discussed with some other maps.

In this paper we study the concepts of semi-totally generalized binary continuous maps (semi-totally ξ -continuous maps) and pre-totally generalized binary continuous maps (pre-totally ξ -continuous maps) in generalized binary topological spaces (ξ -topological spaces).

The concepts of ξ -topological space ($\xi_T S$) have been discussed in section 2. In section 3, we have introduced and studied the concepts of semi-totally ξ -open maps and pre-totally ξ -open maps. Further in this section, the relationships of semi-totally ξ -continuous maps, totally ξ -continuous maps, totally ξ -continuous maps and strongly ξ -continuous maps with each other and some other maps have been have been given. The relationships are established by making the use of some counter examples. Throughout the paper $\wp(\Upsilon)$ denotes the power set of Υ .

2. Preliminaries

Definition 2.1: Let Y_1 and Y_2 be any two non-void sets. Then ξ -topology (ξ_T) from Y_1 to Y_2 is a binary structure $\xi \subseteq \mathcal{D}(Y_1) \times \mathcal{D}(Y_2)$ satisfying the conditions i.e. (\emptyset, \emptyset) , $(Y_1, Y_2) \in \xi$ and If $\{(L_\alpha, M_\alpha); \alpha \in \Gamma\}$ is a family of elements of ξ , then $(U_{\alpha \in \Gamma} L_\alpha, U_{\alpha \in \Gamma} M_\alpha) \in \xi$. If ξ is ξ_T from Y_1 to Y_2 , then (Y_1, Y_2, ξ) is called a ξ -

topological space $(\xi_T S)$ and the elements of ξ are called the ξ -open subsets of (Y_1, Y_2, ξ) . The elements of $Y_1 \times Y_2$ are called simply ξ -points.

Definition 2.2: Let Y_1 and Y_2 be any two non-void set and (L_1, M_1) , (L_2, M_2) be the elements of $\mathcal{D}(Y_1) \times \mathcal{D}(Y_2)$. Then $(L_1, M_1) \subseteq (L_2, M_2)$ only if $L_1 \subseteq L_2$ and $M_1 \subseteq M_2$.

Remark 2.1: Let $\{T_{\alpha} : \alpha \in \Lambda\}$ be the family of ξ_T from Υ_1 to Υ_2 . Then, $\bigcap_{\alpha \in \Lambda} T_{\alpha}$ is also ξ_T from Υ_1 to Υ_2 . Further $\bigcup_{\alpha \in \Lambda} T_{\alpha}$ need not be ξ_T .

Definition 2.3: Let (Y_1, Y_2, ξ) be a $\xi_T S$ and $L \subseteq Y_1, M \subseteq Y_2$. Then (L, M) is called ξ -closed in (Y_1, Y_2, ξ) if $(Y_1 \setminus L, Y_2 \setminus M) \in \xi$.

Proposition 2.1: Let(Y_1, Y_2, ξ) is $\xi_T S$. Then (Y_1, Y_2) and (\emptyset, \emptyset) are ξ -closed sets. Similarly if $\{(L_\alpha, M_\alpha) : \alpha \in \Gamma\}$ is a family of ξ -closed sets, then $(\bigcap_{\alpha \in \Gamma} L_\alpha, \bigcap_{\alpha \in \Gamma} M_\alpha)$ is ξ -closed.

Definition 2.4: Let(Y_1, Y_2, ξ) is $\xi_T S$ and $(L, M) \subseteq (Y_1, Y_2)$. Let $(L, M)^{1^*}_{\xi} = \bigcap \{L_{\alpha} : (L_{\alpha}, M_{\alpha}) \text{ is } \xi\text{-closed set and } (L, M) \subseteq (L_{\alpha}, M_{\alpha}) \}$ and $(L, M)^{2^*}_{\xi} = \bigcap \{M_{\alpha} : (L_{\alpha}, M_{\alpha}) \text{ is } \xi\text{-closed set and } (L, M) \subseteq (L_{\alpha}, M_{\alpha}) \}$. Then $(L, M)^{1^*}_{\xi}, (L, M)^{2^*}_{\xi}$ is ξ -closed set and $(L, M) \subseteq (L, M)^{1^*}_{\xi}, (L, M)^{2^*}_{\xi}$. The ordered pair $(L, M)^{1^*}_{\xi}, (L, M)^{2^*}_{\xi}$ is called ξ -closure of (L, M) and is denoted (L, M) in $(L, M)^{1^*}_{\xi}, (L, M)^{2^*}_{\xi}$ where $(L, M) \subseteq (Y_1, Y_2)$.

Proposition 2.2: Let(L, M) \subseteq (Y_1, Y_2). Then (L, M) is ξ -open in (Y_1, Y_2, ξ) iff (L, M) = I_{ξ} (L, M) and (L, M) is ξ -closed in (Y_1, Y_2, ξ) iff (L, M) = Cl_{ξ} (L, M).

 $\begin{array}{l} \textbf{Proposition 2.3:} \ \, \text{Let} \, \, (L,M) \subseteq (N,P) \subseteq (Y_1,Y_2) \, \, \text{and} \, \, (Y_1,Y_2,\xi) \, \, \text{is} \, \, \xi_T S. \, \, \text{Then} \, \, \text{Cl}_{\xi}(\emptyset,\emptyset) = (\emptyset,\emptyset), \, \, \text{Cl}_{\xi}(Y_1,Y_2) = (Y_1,Y_2) \, \, , \, \, \, (L,M) \subseteq \text{Cl}_{\xi}(L,M) \, \, , \, \, \, (L,M)^{1^*}{}_{\xi} \subseteq (N,P)^{1^*}{}_{\xi} \, \, , \, \, \, (L,M)^{2^*}{}_{\xi}) \subseteq (N,P)^{2^*}{}_{\xi} \, \, , \, \, \, \text{Cl}_{\xi}(L,M) \subseteq \text{Cl}_{\xi}(N,P) \, \, \, \text{and} \, \, \, \text{Cl}_{\xi}(L,M) = \text{Cl}_{\xi}(L,M). \end{array}$

Definition 2.5: Let (Y_1, Y_2, ξ) be $\xi_T S$ and $(L, M) \subseteq (Y_1, Y_2)$. Let $(L, M)^{10}_{\xi} = \bigcup \{L_{\alpha} : (L_{\alpha}, M_{\alpha}) \text{ is } \xi\text{-open set and } (L, M) \subseteq (L_{\alpha}, M_{\alpha}) \}$ and $(L, M)^{20}_{\xi} = \bigcup \{M_{\alpha} : (L_{\alpha}, M_{\alpha}) \text{ is } \xi\text{-open set and } (L, M) \subseteq (L_{\alpha}, M_{\alpha}) \}$. Then $(L, M)^{10}_{\xi}$, $(L, M)^{20}_{\xi}$ is ξ-open set and $(L, M)^{10}_{\xi}$, $(L, M)^{20}_{\xi}$ is called ξ-interior of (L, M) and is denoted $I_{\xi}(L, M)$ in $\xi_T S$ (Y_1, Y_2, ξ) where $(L, M) \subseteq (Y_1, Y_2)$.

Proposition 2.4: Let $(L, M) \subseteq (Y_1, Y_2)$. Then (L, M) is ξ -open set in (Y_1, Y_2, ξ) iff $(L, M) = I_{\xi}(L, M)$.

 $\begin{array}{ll} \textbf{Proposition} & \textbf{2.5:} \;\; \text{Let} \;\; (L,M) \subseteq (N,P) \subseteq (Y_1,Y_2) \;\; \text{and} \;\; (Y_1,Y_2,\xi) \;\; \text{is} \;\; \xi_T S \;. \;\; \text{Then} \;\; I_{\xi}(\emptyset,\emptyset) = (\emptyset,\emptyset), \;\; I_{\xi}(Y_1,Y_2) = (Y_1,Y_2), \;\; (L,M)^{1^0}{}_{\xi} \subseteq (N,P)^{1^0}{}_{\xi} \;, \; (L,M)^{2^0}{}_{\xi} \subseteq (N,P)^{2^0}{}_{\xi} \;, \; I_{\xi}(L,M) \subseteq I_{\xi}(N,P) \;\; \text{and} \;\; I_{\xi}(I_{\xi}(L,M)) = I_{\xi}(L,M) \\ \end{array}$

Definition 2.6: Let (Y_1, Y_2, ξ) be ξ -topological space $(\xi_T S)$ and (Z, \mathcal{T}) be generalized topological space $(G_T S)$. Then the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is called ξ -continuous at $z \in Z$ if for any ξ -open set $(L, M) \in (Y_1, Y_2, \xi)$ with $\mathcal{F}(z) \in (L, M)$ then there exists \mathcal{T} -open G in (Z, \mathcal{T}) such that $z \in G$ and $\mathcal{F}(G) \subseteq (L, M)$. The mapping \mathcal{F} is called ξ -continuous if it is ξ -continuous at each $z \in Z$.

Proposition 2.6: Let (Y_1, Y_2, ξ) be $\xi_T S$ and (Z, \mathcal{T}) be $G_T S$. Then the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is called ξ -continuous map (ξCM) if $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -open in (Z, \mathcal{T}) for every ξ -open set (L, M) in (Y_1, Y_2, ξ) .

Definition 2.7: Let (Y_1, Y_2, ξ) be $\xi_T S$. Then $(L, M) \subseteq (Y_1, Y_2, \xi)$ is said to ξ -semi-open set (ξSOS) if there exists ξ -open set (P, M) such that $(P, M) \subseteq (L, M) \subseteq Cl_{\xi}((L, M))$ or equivalently $(L, M) \subseteq Cl_{\xi}(I_{\xi}(L, M))$. The complement of ξ -semi-open set is ξ -semi-closed set denoted as (ξCOS) .

Definition 2.8: Let (Y_1, Y_2, ξ) be $\xi_T S$ and (Z, \mathcal{T}) be $G_T S$. Then the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is called ξ -semi-continuous map (ξSCM) if $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -semi-open in (Z, \mathcal{T}) for every ξ -open set (L, M) in (Y_1, Y_2, ξ) .

3. Semi-totally ξ-Continuous Maps (SΤξCM)

Definition 3.1: Let (Y_1, Y_2, ξ) be $\xi_T S$ and (Z, \mathcal{T}) be $G_T S$. Then the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is said to be

- i) Semi-totally ξ -open map (ST ξ OM) if the image of every \mathcal{T} -semi-open set in (Z, \mathcal{T}) is ξ -clopen in (Υ_1 , Υ_2 , ξ).
- ii) Pre-totally ξ -open map (PT ξ OM) if the image of every T-pre-open set in (Z, T) is ξ -clopen in (Y_1, Y_2, ξ).

Proposition 3.1: If the mapping $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is ST ξ OM, then the image of every \mathcal{T} -semi-closed set in (Z, \mathcal{T}) is ξ -clopen in (Y_1, Y_2, ξ) .

ISSN: 1001-4055 Vol. 44 No. 4 (2023)

Proof: Let L be \mathcal{T} -semi-closed set in (Z,\mathcal{T}) . Then $Z\setminus L$ is \mathcal{T} -semi-open set in (Z,\mathcal{T}) . Since $\mathcal{F}:(Z,\mathcal{T})\to Y_1\times Y_2$ is $ST\xi OM$, therefore $\mathcal{F}(Z\setminus L)=(Y_1,Y_2)\setminus \mathcal{F}(L))$ is ξ -clopen in (Y_1,Y_2,ξ) . This implies $\mathcal{F}(L)$ is ξ -clopen in (Y_1,Y_2,ξ) .

Proposition 3.2: If the mapping $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is PT ξ OM, then the image of every \mathcal{T} -pre-closed set in (Z, \mathcal{T}) is ξ -clopen in (Y_1, Y_2, ξ) .

Proof: Proof is quite analogous.

Proposition 3.3: The composition of two ST ξ OM's in ξ _TS is again ST ξ OM.

Proof: Let $\mathcal{F}: Z \to Y_1 \times Y_2$ and $\mathcal{G}: Z' \to Y_1' \times Y_2'$ be any two ST ξ OM's. Then their composition is \mathcal{G} o $\mathcal{F}: Z \to Y_1' \times Y_2'$. Let L be a \mathcal{T} -semi open set in Z. Consider $(\mathcal{G}$ o $\mathcal{F})(L) = \mathcal{G}(\mathcal{F}(L))$. Since $\mathcal{F}: Z \to Y_1 \times Y_2$ is ST ξ OM, $\mathcal{F}(L)$ is ξ -clopen in (Y_1, Y_2, ξ) . Hence it is ξ -open in (Y_1, Y_2, ξ) . But every ξ -open set is ξ -semi-open, which implies $\mathcal{F}(L)$ is ξ -semi-open in (Y_1, Y_2, ξ) . Since \mathcal{G} is ST ξ OM, $\mathcal{G}(\mathcal{F}(L))$ is ξ -clopen in (Y_1', Y_2', ξ') . Thus the image of each \mathcal{T} -semi open set in Z is ξ -clopen in (Y_1', Y_2', ξ') . Therefore $(\mathcal{G}$ o $\mathcal{F})$ is ST ξ OM.

Proposition 3.4: The composition of two PT ξ OM's in ξ_T S is again PT ξ OM

Proof: Proof is quite analogous.

Definition 3.2: Let (Y_1, Y_2, ξ) be $\xi_T S$ and (Z, \mathcal{T}) be $G_T S$. Then the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is called semitotally ξ -continuous map $(ST\xi CM)$ if $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -clopen in (Z, \mathcal{T}) for every ξ -semi-open set (L, M) in (Y_1, Y_2, ξ) .

Example 3.1: Let $Z = \{1, 2, 3\}$, $Y_1 = \{m_1, m_2\}$ and $Y_2 = \{l_1, l_2\}$. Then $\mathcal{T} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, Z\}$ and $\xi = \{(\emptyset, \emptyset), (\{m_1\}, \{l_1\}), (\{m_2\}, \{Y_2\}), (Y_1, Y_2)\}$. Clearly \mathcal{T} is G_T on Z and ξ is ξ_T from Y_1 to Y_2 . Now define $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ by $\mathcal{F}(1) = (m_1, l_1)$ and $\mathcal{F}(2) = \mathcal{F}(3) = (m_2, l_2)$. The \mathcal{T} -clopen sets in (Z, \mathcal{T}) are $\emptyset, \{1\}, \{2\}, \{1, 3\}, \{2, 3\}, Z$ and ξ -semi-open sets in (Y_1, Y_2, ξ) are $(\emptyset, \emptyset), (\{m_1\}, \{l_1\}), (\{m_1\}, \{Y_2\}), (\{m_2\}, \{Y_2\}), (\{Y_1\}, \{l_1\}), (Y_1, Y_2)$. Therefore $\mathcal{F}^{-1}(\emptyset, \emptyset) = \emptyset$, $\mathcal{F}^{-1}(\{m_1\}, \{l_1\}) = \{1\}$, $\mathcal{F}^{-1}(\{m_1\}, \{Y_2\}) = \{1\}$, $\mathcal{F}^{-1}(\{m_2\}, \{Y_2\}) = \{2, 3\}$, $\mathcal{F}^{-1}(\{Y_1\}, \{l_1\}) = \{1\}$ and $\mathcal{F}^{-1}(Y_1, Y_2) = Z$. This shows that the inverse image of every ξ -semi-open set in (Y_1, Y_2, ξ) is \mathcal{T} -clopen in (Z, \mathcal{T}) . Hence $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is STξCM.

Proposition 3.5: Let (Y_1, Y_2, ξ) be $\xi_T S$ and (Z, \mathcal{T}) be $G_T S$. Then the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is be ST ξ CM iff $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -clopen in (Z, \mathcal{T}) for every ξ -semi-closed set (L, M) in (Y_1, Y_2, ξ) .

Proof: Let (Y_1, Y_2, ξ) be $\xi_T S$ and (Z, \mathcal{T}) be $G_T S$. Then the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is be ST ξ CM. Let (L, M) be ξ -semi-closed set (L, M) in (Y_1, Y_2, ξ) . Then $(Y_1 \setminus L, Y_2 \setminus M)$ is ξ -semi-open set in (Y_1, Y_2, ξ) . By definition $\mathcal{F}^{-1}(Y_1 \setminus L, Y_2 \setminus M)$ is \mathcal{T} -clopen in (Z, \mathcal{T}) . That is $(Z \setminus \mathcal{F}^{-1}(L, M))$ is \mathcal{T} -clopen in (Z, \mathcal{T}) . Which implies $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -clopen in (Z, \mathcal{T}) for every ξ -semi-closed set (L, M) in (Y_1, Y_2, ξ) .

Conversely, let (N, P) be ξ -semi-open set in (Y_1, Y_2, ξ) . Then $(Y_1 \setminus N, Y_2 \setminus P)$ is ξ -semi-closed set in (Y_1, Y_2, ξ) . By hypothesis, $\mathcal{F}^{-1}(Y_1 \setminus N, Y_2 \setminus P) = Z \setminus \mathcal{F}^{-1}(N, P)$ is \mathcal{T} -clopen in (Z, \mathcal{T}) , which implies $\mathcal{F}^{-1}(N, P)$ is \mathcal{T} -clopen in (Z, \mathcal{T}) . Thus, inverse image of every ξ -semi-closed set (L, M) in (Y_1, Y_2, ξ) is \mathcal{T} -clopen in (Z, \mathcal{T}) . Therefore \mathcal{F} : $(Z, \mathcal{T}) \to Y_1 \times Y_2$ is $ST\xi CM$

Proposition 3.6: If $\mathcal{F}: \mathbb{Z} \to \Upsilon_1 \times \Upsilon_2$ is ST\$CMand $\mathcal{G}: \mathbb{Z}' \to \Upsilon_1' \times \Upsilon_2'$ is \$SCM $\mathcal{G}o\mathcal{F}: \mathbb{Z} \to \Upsilon_1' \times \Upsilon_2'$ is T\$CM.

Proof: Let (L, M) be ξ -open set in $({\Upsilon_1}', {\Upsilon_2}', \xi')$. Since $\mathcal{G}: Z' \to {\Upsilon_1}' \times {\Upsilon_2}'$ is ξ SCM, $\mathcal{G}^{-1}(L, M)$ is \mathcal{T} -semi-open set in (Z', \mathcal{T}) . Now since $\mathcal{F}: Z \to {\Upsilon_1} \times {\Upsilon_2}$ is ST ξ CM, $\mathcal{F}^{-1}(\mathcal{G}^{-1}(L, M)) = (\mathcal{G}\circ\mathcal{F})^{-1}(L, M)$ is \mathcal{T} -clopen in (Z, \mathcal{T}) . Hence $\mathcal{G}\circ\mathcal{F}: Z \to {\Upsilon_1}' \times {\Upsilon_2}'$ is T ξ CM

Proposition 3.7: Every ST ξ CM in ξ _TS is T ξ CM

Proof: Let (Y_1, Y_2, ξ) be $\xi_T S$ and (Z, \mathcal{T}) be $G_T S$ and the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is ST ξ CM. Since every ξ -open set in ξ_T is ξ -semi-open set. Let (L, M) be ξ -semi-open set in (Y_1, Y_2, ξ) . This implies $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -clopen in (Z, \mathcal{T}) . Thus, inverse image of every ξ -open set in (Y_1, Y_2, ξ) is \mathcal{T} -clopen in (Z, \mathcal{T}) . Therefore $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is $T\xi$ CM.

Remark 3.1: The converse of Proposition 3.7 need not be true shown in Example 3.2

Example 3.2: Let $Z = \{1, 2, 3\}$, $Y_1 = \{m_1, m_2\}$ and $Y_2 = \{l_1, l_2\}$. Then $\mathcal{T} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, Z\}$ and $\xi = \{(\emptyset, \emptyset), (\{m_1\}, \{l_1\}), (\{m_2\}, \{Y_2\}), (Y_1, Y_2)\}$. Clearly \mathcal{T} is G_T on Z and ξ is ξ_T from Y_1 to Y_2 . Now define $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ by $\mathcal{F}(1) = (m_1, l_1), \mathcal{F}(2) = (m_2, Y_2)$ and $\mathcal{F}(3) = (Y_1, l_1)$. The \mathcal{T} -clopen sets in (Z, \mathcal{T}) are $\emptyset, \{1\}, \{2\}, \{1, 3\}, \{2, 3\}, Z$. Therefore $\mathcal{F}^{-1}(\emptyset, \emptyset) = \emptyset$, $\mathcal{F}^{-1}(\{m_1\}, \{l_1\}) = \{1\}$, $\mathcal{F}^{-1}(\{m_2\}, \{Y_2\}) = \{2\}$ and $\mathcal{F}^{-1}(Y_1, Y_2) = Z$. This shows that the inverse image of every ξ -open set in (Y_1, Y_2, ξ) is \mathcal{T} -clopen in (Z, \mathcal{T}) .

ISSN: 1001-4055 Vol. 44 No. 4 (2023)

Hence $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is T&CM.but not ST&CM because, $\mathcal{F}^{-1}(\{Y_1\}, \{l_1\}) = \{3\}$, where $\{3\}$ is not \mathcal{T} -clopen in (Z, \mathcal{T}) .

Proposition 3.8: Every S ξ CM in ξ _TS is ST ξ CM

Proof: Let (Y_1, Y_2, ξ) be $\xi_T S$ and (Z, \mathcal{T}) be $G_T S$ and the map $\mathcal{F} \colon (Z, \mathcal{T}) \to Y_1 \times Y_2$ is S\xi S\xi CM. Let (L, M) be \xi -semi-open set in (Y_1, Y_2, ξ) . Therefore by the definition, $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -clopen in (Z, \mathcal{T}) . Thus, inverse image of every \xi -semi-open set in (Y_1, Y_2, ξ) is \mathcal{T} -clopen in (Z, \mathcal{T}) . Therefore $\mathcal{F} \colon (Z, \mathcal{T}) \to Y_1 \times Y_2$ is ST\xi CM.

Remark 3.2: Converse of Proposition 3.4 is not true shown in Example 3.3.

Example 3.3: Let Z = {1, 2, 3}, Y₁ = {m₁, m₂} and Y₂ = {l₁, l₂}. Then $\mathcal{T} = \{\emptyset, \{1\}, \{2\}, \{1,3\}, \{2,3\}, Z\}\}$ and $\xi = \{(\emptyset, \emptyset), (\{m_1\}, \{l_1\}), (\{m_2\}, \{Y_2\}), (Y_1, Y_2)\}$. Clearly \mathcal{T} is G_T on Z and ξ is ξ_T from Y₁ to Y₂. Now define $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ by $\mathcal{F}(1) = (m_1, l_1), \mathcal{F}(2) = (m_2, Y_2)$ and $\mathcal{F}(3) = (m_1, l_2)$. The \mathcal{T} -clopen sets in (Z, \mathcal{T}) are $\emptyset, \{1\}, \{2\}, \{1,3\}, \{2,3\}, Z$ and ξ -semi-open set in (Y_1, Y_2, ξ) are $(\emptyset, \emptyset), (\{m_1\}, \{l_1\}), (\{m_1\}, \{Y_2\}), (\{m_2\}, \{Y_2\}), (\{Y_1\}, \{l_1\}), (\{Y_1\}, \{l_2\})$ and (Y_1, Y_2) . Therefore $\mathcal{F}^{-1}(\emptyset, \emptyset) = \emptyset$, $\mathcal{F}^{-1}(\{m_1\}, \{l_1\}) = \{1\}$, $\mathcal{F}^{-1}(\{m_1\}, \{Y_2\}) = \{1\}$, $\mathcal{F}^{-1}(\{m_2\}, \{Y_2\}) = \{2\}$, $\mathcal{F}^{-1}(\{Y_1\}, \{l_1\}) = \{1\}$, $\mathcal{F}^{-1}(\{Y_1\}, \{l_2\}) = \{\emptyset\}$ and $\mathcal{F}^{-1}(Y_1, Y_2) = Z$. This shows that the inverse image of every ξ -semi-open set in (Y_1, Y_2, ξ) is \mathcal{T} -clopen in (Z, \mathcal{T}) . Hence $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is STξCM.but not SξCM because, $\mathcal{F}^{-1}(\{m_1\}, \{l_2\}) = \{3\}$, where $\{3\}$ is not \mathcal{T} -clopen in (Z, \mathcal{T}) .

Proposition 3.9: Every ST ξ CM in ξ _TS is T ξ SCM

Proof: Let (Y_1, Y_2, ξ) be $\xi_T S$ and (Z, \mathcal{T}) be $G_T S$ and the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is ST ξ CM. Let (L, M) be ξ -open set in (Y_1, Y_2, ξ) . Since every ξ -open set is ξ -semi-open set. Therefore by the definition, $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -clopen and hence \mathcal{T} -semi-clopen in (Z, \mathcal{T}) . Thus, inverse image of every ξ -open set in (Y_1, Y_2, ξ) is \mathcal{T} -semi-clopen in (Z, \mathcal{T}) . Therefore $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is T ξ SCM.

Remark 3.3: Converse of Proposition 3.5 is not true shown in Example 3.4.

Example 3.4: Let $Z = \{1, 2, 3\}$, $Y_1 = \{m_1, m_2\}$ and $Y_2 = \{l_1, l_2\}$. Then $\mathcal{T} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, Z\}$ and $\xi = \{(\emptyset, \emptyset), (\{m_1\}, \{l_1\}), (\{m_2\}, \{Y_2\}), (Y_1, Y_2)\}$. Clearly \mathcal{T} is G_T on Z and ξ is ξ_T from Y_1 to Y_2 . Now define $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ by $\mathcal{F}(1) = (m_1, l_1)$, $\mathcal{F}(2) = (m_2, Y_2)$ and $\mathcal{F}(3) = (Y_1, l_1)$. The \mathcal{T} -semi-clopen sets in (Z, \mathcal{T}) are $\emptyset, \{1\}, \{2\}, \{1, 3\}, \{2, 3\}, Z$. Therefore $\mathcal{F}^{-1}(\emptyset, \emptyset) = \emptyset$, $\mathcal{F}^{-1}(\{m_1\}, \{l_1\}) = \{1\}$, $\mathcal{F}^{-1}(\{m_2\}, \{Y_2\}) = \{2\}$ and $\mathcal{F}^{-1}(Y_1, Y_2) = Z$. This shows that the inverse image of every ξ -open set in (Y_1, Y_2, ξ) is \mathcal{T} -semi-clopen in (Z, \mathcal{T}) . Hence $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is ST ξ CM.but not T ξ SCM because, $\mathcal{F}^{-1}(\{Y_1\}, \{l_1\}) = \{3\}$, where $\{3\}$ is not \mathcal{T} -clopen in (Z, \mathcal{T}) .

Proposition 3.10: Every ST ξ CM in ξ _TS is ξ SCM

Proof: Let (Y_1, Y_2, ξ) be $\xi_T S$ and (Z, \mathcal{T}) be $G_T S$ and the map $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is ST\(\xi\)CM. Let (L, M) be \(\xi\)-open set in (Y_1, Y_2, ξ) . Therefore by the definition, $\mathcal{F}^{-1}(L, M)$ is \mathcal{T} -clopen and hence \mathcal{T} -semi-open in (Z, \mathcal{T}) . Thus, inverse image of every \(\xi\)-open set in (Y_1, Y_2, ξ) is \mathcal{T} -semi-open in (Z, \mathcal{T}) . Therefore $\mathcal{F}: (Z, \mathcal{T}) \to Y_1 \times Y_2$ is \(\xi\)SCM.

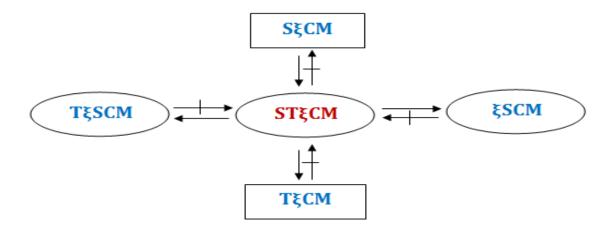
Remark 3.4: Converse of Proposition 3.6 is not true shown in Example 3.5.

Example 3.5: Let $Z=\{1,2,3\},\ Y_1=\{m_1,m_2\}$ and $Y_2=\{l_1,l_2\}.$ Then $\mathcal{T}=\{\emptyset,\{1\},\{1,2\},\{2,3\},Z\}$ and $\xi=\{(\emptyset,\emptyset),(\{m_1\},\{l_1\}),(\{m_2\},\{Y_2\}),(Y_1,Y_2)\}$. Clearly \mathcal{T} is G_T on Z and ξ is ξ_T from Y_1 to Y_2 . Now define $\mathcal{F}\colon (Z,\mathcal{T})\to Y_1\times Y_2$ by $\mathcal{F}(1)=(m_1,l_1),\mathcal{F}(2)=(m_2,\emptyset)$ and $\mathcal{F}(3)=(Y_1,l_1).$ The \mathcal{T} -semi-clopen sets in (Z,\mathcal{T}) are $\emptyset,\{1\},\{1,2\},\{2,3\},Z$. Therefore $\mathcal{F}^{-1}(\emptyset,\emptyset)=\emptyset$, $\mathcal{F}^{-1}(\{m_1\},\{l_1\})=\{1\}$, $\mathcal{F}^{-1}(\{m_2\},\{Y_2\})=\{\emptyset\}$ and $\mathcal{F}^{-1}(Y_1,Y_2)=Z$. This shows that the inverse image of every ξ -open set in (Y_1,Y_2,ξ) is \mathcal{T} -semi-open in (Z,\mathcal{T}) . Hence $\mathcal{F}\colon (Z,\mathcal{T})\to Y_1\times Y_2$ is ξ SCM.but not ST ξ CM because, $\mathcal{F}^{-1}(\{Y_1\},\{l_1\})=\{3\}$, where $\{3\}$ is not \mathcal{T} -clopen in (Z,\mathcal{T}) .

4. Conclusion

In this paper, a very useful concept of the concept of semi-totally ξ -open maps and pre-totally ξ -open maps in $\xi_T S$ have been introduced and established the relationships between these maps and some other maps by making the use of some counter examples. Further the concept of semi-totally ξ -continuous maps and totally ξ -semi-continuous maps have been introduced and established the relationships by making the use of some counter examples. The conclusion is also illustrated by the following figure

1011 1 (1021)



References

- [1] Ahengar N.A. and J.K. Maitra, On g-binary continuity, Journal of Emerging Technologies and Inovative Research, 7, 240-244, (2018).
- [2] Arya, S. P. and Gupta, R. On strongly continuous functions, Kyungpook Math. J., 14, 131-143, (1974).
- [3] Anuradha N. and Baby Chacko, Some Properties of Almost Perfectly Continuous Functions in Topological Spaces, International Mathematical Forum 10(3), 143-156 (2015).
- [4] Benchalli **S.S.** and Umadevi I Neeli "Semi-Totally Continuous Functions in Topological Spaces" International Mathematical Forum 6(10), 479-492, (2011).
- [5] Bhattacharya,S, On Generalized Regular Closed Sets ,Int . J. Contemp. Math. Sciences, 6 (3) 145-152 (2011).
- [6] Chen, C.C., Conejero, J.A., Kostic, M., Murillo-Arcila., M., Dynamics on Binary Relations over Topological Spaces. Symmetry 2018, 10: 211. https://doi.org/10.3390/sym10060211
- [7] Csaszar, A. Generalized topology, generalized continuity, Acta Math. Hungar, 96, 351-357 (2002).
- [8] Devi, R., Balachandran K., Maki, H. Semi-generalized closed maps and generalized semi-closed maps, Mem. Fac. Sci. Kochi Univ. Ser. A. Math, 14, 41-54 (1993).
- [9] Egenhofer, MJ. Reasoning about binary topological relations. Symposium on Spatial Databases SSD 1991: Advances in Spatial Databases, 141-160, (1991).
- [10] Engelking R. Generel Topology, Polish Scientific Publishers, Warszawa (1977).
- [11] Gevorgyan, PS. Groups of binary operations and binary G-spaces. Topology and its Applications, 201, 18–28, (2016).
- [12] Hatir E, Noiri T. Decompositions of continuity and complete continuity. Acta Math Hungary , 4, 281–287, (2006).
- [13] Jamal M. Mustafa, On Binary Generalized Topological Spaces, Refaad General Letters in Mathematics, 2(3), 111-116 (2017).
- [14] Kuratowski, K., Topologie I, Warszawa, (1930).
- [15] Levine N. A decomposition of continuity in topological spaces. Am Math Mon, 68, 44–6, (1961).
- [16] Levine, N. Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly, 70, 36-41, (1963).
- [17] Levine, N. Generalized closed sets in Topology, Rend. Cir. Mat. Palermo, 2, 89-96, (1970).
- [18] Njastad, O, On some classes of nearly open sets, Pacific J. Math, 15, 961–970, (1965).
- [19] NithyananthaJothi S., and P. Thangavelu, Topology between two sets, Journal of Mathematical Sciences & Computer Applications, 1(3), 95-107 (2011)
- [20] Nour T.M, Totally semi-continuous functions, Indian J. Pure Appl.Math, 26(7), 675 678 (1995).