ISSN: 1001-4055 Vol. 44 No. 4 (2023)

Group Difference Cordial Labeling in Graphs

I.Beaulah Bell 1*, R. Kala²

^{1&2}Department of Mathematics

Manonmaniam Sundaranar University Abishekpatti, Tirunelveli-627012, Tamilnadu, India.

Abstract

Let G = (VG), E(G) be a graph . Let Γ be a group .For $u \in \Gamma$, let o(u) denotes the order of u in Γ . Let $f : V(G) \to \Gamma$ be a function . For each edge uv

assign the label |o(f(u)) - o(f(v))|. Let $v_f(i)$ denotes the number of vertices of G having label i under f. Also $e_f(1)$, $e_f(0)$ respectively denote the number

of edges labeled with 1 and not with 1. Now f is called a group difference cordial

labeling if $|v_f(i) - v_f(j)| \le 1$ for every $i, j \in \Gamma, i \ne j$ and $|e_f(1) - e_f(0)| \le 1$. A graph which admits a group difference cordial labeling (*GDCL*) is called group

difference cordial graph. In this paper we fix the group Γ as the group $\{1,-1,i,-i\}$ which is the group of fourth roots of unity, that is cyclic with generators i and -i. We proved that path graph, bistar graph, and Crown graph are group differenceCordial graph We further characterized Ladder graph, and star graph is a group difference cordial graph. **AMS subject classification**: 05C78

Keywords: Cordial labeling, difference labeling, group difference cordial labeling.

1 Introduction

Graphs considered here are finite, undirected and simple. An assignment of integers to the vertices, edges or both in a graph is known as labeling and it depends on a few factors. Cahit et.al introduced the concept of cordial labeling [3].Ponraj et al. introduced a new labeling called difference cordial labeling [6]. Athis ayanathan et al. introduced the concept of group A cordial labeling [1]. Labelled graphs are valuable models for a variety of applications including constraint programming across finite domains, circuit design, addressing in communication networks and astronomy.

Definition 1.1.[3] Let $f: V(G) \to \{0,1\}$ be any function . For each edge xy assign the label |f(x) - f(y)|. f is called a coordial labeling if the number of vertices labeled 0 and the number of vertices labeled 1 differ by at most 1. Also the number of edges labelled 0 and the number of edges labeled 1 differ by at most 1.

In[6], Ponraj et al. introduced a new labeling called difference cordial labeling.

Definition 1. 2. [6] Let G be a (p,q) graph . Let $f:V(G)\to\{1,2\dots p\}$ be a bijection . For each edge uv, assign the label |f(u)-f(v)|. f is called a difference cordial labeling if f is 1-1 and $\left|e_f(0)-e_f(1)\right|=1$ where $e_f(1)$ and $e_f(0)$ denote the number of edges with 1 and not labeled with 1 respectively . A graph with a difference cordial labeling is called a difference cordial graph.

Athisayanathan et al. [1] introduced the concept of group A cordial labeling.

Definition 1.3. [1] Let A be a group. We denote the order of an element $a \in A$ by o(a). Let $f: V(G) \to A$ be a function . For each edge uv assign the label 1 if $\left(o(f(u)), o(f(v))\right)$ = 1 or 0 otherwise. f is called a group A Cordial labeling if $\left|v_f(a) - v_f(b)\right| \le 1$ and $\left|e_f(0) - e_f(1)\right| \le 1$, where $v_f(x)$ and $e_f(n)$ respectively denote the number of vertices labeled with an element x and number of edges labeled with n(n=0,1) A graph which admits a group A Cordial labeling is called a group A cordial graph.

Motivated by these, we define group difference cordial labeling of graphs. Terms not defined here are used in the sense of Harary [4] and Gallian [3]. For any real number x, we denote $\lfloor x \rfloor$, the greatest integer smaller than or equal to x and by $\lceil x \rceil$, we mean the smallest integer greater than or equal to x.

A path is an alternating sequence of v_1 , e_1 , v_2 , e_2 , ..., v_{n-1} , e_{n-1} , v_n . A path on n vertices is denoted by P_n . A bipartite graph is a graph whose vertex set V(G) can be partitioned in to two subsets V_1 and V_2 such that every edge of G joins a vertex of V_1 with a vertex of V_2 . If every vertex of V_1 is adjacent with every vertex of V_2 , then G is a complete bipartite graph .If $|V_1| = m$ and $|V_2| = n$ then the complete bipartite graph is denoted by $K_{m,n}$. $K_{1,n}$ is called a star graph .The Bistar $B_{m,n}$ is the graph obtained by making adjacent the two central vertices of $K_{1,m}$ and $K_{1,n}$. The graph $L_n = P_n \times P_2$ is called a ladder. The corona of G_1 with G_2 , $G_1 \odot G_2$ is the graph obtained by taking one copy of G_1 and G_2 and joiningthe i G_2 is the graph obtained by taking one copy of G_2 . The graph $G_2 \odot K_1$ is called a crown.

2. Group Difference cordial Graphs

Definition 2. 1. Let G = (V(G), E(G)) be a graph . Let Γ be a group . For $u \in \Gamma$, let o(u) denote the order of u in Γ . Let $f \colon V(G) \to \Gamma$ be a function . For each edge uv assign the label |o(f(u)) - o(fv))|. Let $v_f(i)$ denote the number of vertices of G having label i under f. Also $e_f(1)$, $e_f(0)$ respectively denote the number of edges labeled with 1 and not with 1. Now f is called a group difference cordial labeling if $|v_f(i) - v_f(j)| \le 1$ for every i, $j \in \Gamma$, $i \ne j$ and $|e_f(1) - e_f(0)| \le 1$. A graph which admits a group difference cordial labeling is called group difference cordial graph .

In this paper we take the group Γ as the group $\{1, -1, i, -i\}$ which is the group of fourth roots of unity, that is cyclic with generators i and -i.

Theorem 2.2. The Path P_n is a group difference coodial graph for all 'n'.

Proof: Let $G = P_n$ have n vertices and f be the group difference cordial labeling of G.

Let $V(G) = \{u_1, u_2 \dots u_n\}$. Clearly P_n is a group difference cordial graph for $n \le 3$.

Assume $n \ge 4$ and define $f: V(G) \to \{1, -1, i, -i\}$ as follows

Case (i): $n \equiv 0 \pmod{4}$, Let $n = 4k, k \ge 1$.

$$f(u_{2i-1}) = \left\{ \begin{array}{ll} 1 & if \ 1 \leq i \leq k \\ i & if \ k+1 \leq i \leq 2k \end{array} \right.$$

$$f(u_{2i}) = \{ \begin{cases} -1 & \text{if } 1 \le i \le k \\ -i & \text{if } k+1 \le i \le 2k \end{cases}$$

Clearly $V_f(1) = k$, $V_f(-1) = k$, $V_f(i) = V_f(-i) = k$. As 2k consecutive vertices are labelled alternatively, with 1 and -1. we get $e_f(1) = 2k - 1$ and $e_f(0) = 2k$. Therefore, f is a group

difference cordial labeling of G.

Case (ii): $n \equiv 1 \pmod{4}$, Let n = 4k + 1, $k \ge 1$.

$$f(u_{2i-1}) = \begin{cases} 1 & \text{if } 1 \le i \le k+1 \\ i & \text{if } k+2 \le i \le 2k+1 \end{cases}$$

$$f(u_{2i}) = \{ \substack{-1 \ if \ 1 \le i \le k \\ -i \ if \ k+1 \le i \le 2k}$$

Clearly
$$V_f(1) = k + 1$$
, $V_f(-1) = V_f(i) = V_f(-i) = k$. Also $e_f(1) = 2k = e_f(0)$. Therefore,

f is a group difference cordial labeling of G.

Case (iii): $n \equiv 2 \pmod{4}$, Let $n = 4k + 2, k \ge 1$.

$$f(u_{2i-1}) = \{ \substack{1 & if & 1 \le i \le k+1 \\ i & if & k+2 \le i \le 2k+1 } \}$$

$$f(u_{2i}) = \{ \substack{-1 \ if \ 1 \le i \le k+1 \\ -i \ if \ k+2 \le i \le 2k+1} \}$$

Clearly
$$V_f(1) = k + 1 = V_f(-1)$$
, $V_f(i) = V_f(-i) = k$. Also $e_f(1) = 2k + 1$ and $e_f(0) = 2k$.

Therefore, f is a group difference cordial labeling of $\mathcal G$.

Case (iv): $n \equiv 3 \pmod{4}$, Let n = 4k + 3, $k \ge 1$.

$$f(u_{2i-1}) = \begin{cases} 1 & \text{if } 1 \le i \le k+1 \\ i & \text{if } k+2 \le i \le 2k+2 \end{cases}$$

$$f(u_{2i}) = \begin{cases} -1 & \text{if } 1 \le i \le k+1 \\ -i & \text{if } k+2 \le i \le 2k+1 \end{cases}$$

Clearly
$$V_f(1) = V_f(-1) = V_f(i) = k + 1$$
, $V_f(-i) = k$. Also $e_f(1) = 2k + 1 = e_f(0)$

Therefore, f is a group difference cordial labeling of G.

Theorem 2.3. The Ladder L_n is a group difference cordial graph if and only if n is odd,

 $n \ge 3$.

Proof: Assume $G = L_n$ is a group difference cordial graph and f is a group difference cordial labeling of G.

Claim: n is odd

Suppose if n is even, n=2k, for $k \ge 1$ then by definition L_n has 4k vertices and 6k-2 edges. So $V_f(1) = V_f(-1) = V_f(i) = V_f(-i) = k$ for any group difference cordial labeling f. To get an edge $e = u_i u_{i+1}$ with label 1 we must have the labeling as $f(u_i) = 1$ or

 $f(u_{i+1}) = -1$ and vice versa for 2k vertices. Therefore, the maximum number of edges that

could be labelled with 1 are 3k-2

So the number of edges that are labelled other than 1 is 3k (ie), $e_f(1) = 3k - 2$ and $e_f(0) = 3k$. which is a contradiction.

Conversely, assume n is odd, that is n = 2k + 1, $k \ge 1$. Therefore $G = L_n$ has 4k + 2 vertices

and
$$6k + 1$$
 edges.Let $V(G) = \{u_1, u_2 \dots u_n\}$. Define $f : V(G) \rightarrow \{1, -1, i, -i\}$ as follows

$$f(u_{2i-1}) = \{ \substack{1 \ if \ 1 \le i \le k+1 \\ i \ if \ k+2 \le i \le 2k+1}$$

$$f(u_{2i}) = \{ \begin{cases} -1 & \text{if } 1 \le i \le k+1 \\ -i & \text{if } k+2 \le i \le 2k+1 \end{cases}$$

Clearly
$$V_f(1) = k + 1 = V_f(-1)$$
, $V_f(i) = V_f(-i) = k$. Also $e_f(1) = 3k + 1$ and $e_f(0) = 3k$.

Therefore, f is a group difference cordial labeling of G

Theorem 2.4. The Crown graph $C_n \odot k_1$ is a group difference cordial graph for every n, $n \ge 3$.

Proof: Let $G = C_n \odot k_1$ have 2n vertices and f be the group difference cordial labeling of G.

Let
$$V(G) = \{u_1, u_2 \dots u_{2n}\}$$
. Define $f : V(G) \to \{1, -1, i, -i\}$ as follows

Case (i):
$$n \equiv 0 \pmod{4}$$
, Let $n = 4k, k \ge 1$.

$$f(u_{2i-1}) = \begin{cases} 1 & \text{if } 1 \le i \le 2k \\ i & \text{if } 2k+1 \le i \le 4k \end{cases}$$

$$f(u_{2i}) = \begin{cases} -1 & \text{if } 1 \le i \le 2k \\ -i & \text{if } 2k + 1 \le i \le 4k \end{cases}$$

Clearly
$$V_f(1) = 2k$$
, $V_f(-1) = V_f(i) = V_f(-i) = 2k$. Also $e_f(1) = 4k = e_f(0)$. Therefore,

f is a group difference cordial labeling of G.

Case (ii): $n \equiv 1 \pmod{4}$, Let n = 4k + 1, $k \ge 1$.

$$f(u_{2i-1}) = \begin{cases} 1 & \text{if } 1 \le i \le 2k+1 \\ 1 & \text{if } 2k+2 \le i \le 4k+1 \end{cases}$$

$$f(u_{2i}) = \{ \begin{array}{ccc} -1 & if & 1 \le i \le 2k+1 \\ -i & if & 2k+2 \le i \le 4k+1 \end{array} \}$$

Clearly
$$V_f(1) = 2k + 1 = V_f(-1)$$
, $V_f(i) = V_f(-i) = 2k$. Also $e_f(1) = 4k + 1 = e_f(0)$.

Therefore, f is a group difference cordial labeling of G.

Case (iii): $n \equiv 2 \pmod{4}$, Let n = 4k + 2, $k \ge 1$.

$$f(u_{2i-1}) = \left\{ \begin{array}{ll} 1 & if & 1 \leq i \leq 2k+1 \\ i & if & 2k+2 \leq i \leq 4k+2 \end{array} \right.$$

$$f(u_{2i}) = \{ \begin{pmatrix} -1 & if & 1 \le i \le 2k+1 \\ -i & if & 2k+2 \le i \le 4k+1 \end{pmatrix} \}$$

Clearly
$$V_f(1) = V_f(-1) = V_f(i) = V_f(-i) = 2k + 1$$
. Also $e_f(1) = 4k + 2 = e_f(0)$

Therefore, f is a group difference cordial labeling of G.

Case (iv): $n \equiv 3 \pmod{4}$, Let n = 4k + 3, $k \ge 1$.

$$f(u_{2i-1}) = \{ \begin{array}{ll} 1 & \text{if} & 1 \le i \le 2k+2 \\ i & \text{if} & 2k+3 \le i \le 4k+3 \end{array} \}$$

$$f(u_{2i}) = \begin{cases} -1 & \text{if} & 1 \le i \le 2k+2 \\ -i & \text{if} & 2k+3 \le i \le 4k+3 \end{cases}$$

Clearly
$$V_f(1) = 2k + 2 = V_f(-1), V_f(i) = V_f(-i) = 2k + 1$$
. Also $e_f(1) = 4k + 3 = e_f(0)$

ISSN: 1001-4055 Vol. 44 No. 4 (2023)

Therefore, f is a group difference cordial labeling of G.

Theorem 2.5. The S_n is a group difference cordial graph if and only if $n \le 6$.

Proof: Let $G = S_n$ have n vertices and f be the group difference cordial labeling of G.

Let
$$V(G) = \{u_1, u_2 \dots u_n\}.$$

Suppose $n \leq 6$. The group difference cordial labeling of S_n is given in the following table

n	u_1	u_2	u_3	u_4	u_5	u_6
1	1					
2	1	-1				
3	1	-1	i			
4	1	-1	i	-i		
5	1	-1	i	-i	-1	
6	1	-1	i	-i	-1	1

Conversely suppose S_n is a group difference cordial graph .To prove $n \le 6$.

Suppose n > 6.

Case (i):
$$n \equiv 0 \pmod{4}$$
,

Let $n=4k, k\geq 2$. So $V_f(1)=V_f(-1)=V_f(i)=V_f(-i)=k$ for any group difference cordial labeling. Let u_1 be the apex vertex that is assigned label 1 for all graph. Since -1 is assigned to k vertices, we get k edges with label 1 and remaining 3k-1 edges without label 1.(ie) $e_f(1)=k$ and $e_f(0)=3k-1$ which is a contradiction for $k\geq 2$.

Case (ii):
$$n \equiv 1 \pmod{4}$$

Let
$$n = 4k + 1$$
, $k \ge 2$. So $V_f(1) = V_f(-1) = V_f(i) = k$, $V_f(-i) = k + 1$ for any group

difference cordial labeling. Here k + 1 vertices are assigned label -1 and so we get k + 1 edges with labeling 1 and remaining 3k - 1 edges are labelled with labels other than 1.

(ie) $e_f(1) = k + 1$ and $e_f(0) = 3k - 1$ which is a contradiction for $k \ge 2$.

Case (iii):
$$n \equiv 2 \pmod{4}$$

Let
$$n = 4k + 2$$
, $k \ge 2$. So $V_f(1) = V_f(-1) = k + 1$, $V_f(i) = V_f(-i) = k$ for any group

difference cordial labeling. Here k+1 vertices are assigned label-1 and so we get k+1

edges with labeling 1 and remaining 3k edges as without 1.(ie) $e_f(1) = k + 1$ and

 $e_f(0) = 3k$. which is a contradiction for $k \ge 2$.

Case (iv):
$$n \equiv 3 \pmod{4}$$

Let
$$n = 4k + 3, k \ge 1$$
. So $V_f(1) = V_f(-1) = V_f(i) = k + 1, V_f(-i) = k$ for any group

difference cordial labeling. Here k + 1 vertices are assigned label -1 and so we get k + 1

Vol. 44 No. 4 (2023)

edges with labeling 1 and remaining 3k + 1 edges as without 1.(ie) $e_f(1) = k + 1$ and $e_f(0) = 3k + 1$ which is a contradiction for $k \ge 1$. Hence $G = S_n$ is a group difference cordial graph for $n \le 6$.

Theorem2.6. The Bistar $B_{n,n}$ is a group difference cordial graph for all 'n'.

Proof: Let $G = B_{n,n}$ have 2n + 2 vertices, f be the group difference cordial labeling of G.Let $V(G) = \{u, v, u_i, v_i : 1 \le i \le n\}$. and $E(G) = \{uv, uu_i, vv_i : 1 \le i \le n\}$.

Clearly $B_{n,n}$ is a group difference cordial graph for $n \leq 3$. Assume $n \geq 4$ and fix u as 1 and v as -1. Define $f: V(G) \to \{1, -1, i, -i\}$ as follows.

Case (i): $n \equiv 0 \pmod{4}$, Let $n = 4k, k \ge 1$.

$$f(u_i) = \{ \begin{smallmatrix} -1 & if & 1 \le i \le 2k \\ -i & if & 2k+1 \le i \le 4k \end{smallmatrix} \}$$

$$f(v_i) = \left\{ \begin{array}{ll} 1 & if & 1 \le i \le 2k \\ i & if & 2k+1 \le i \le 4k \end{array} \right.$$

Clearly $V_f(1) = 2k + 1 = V_f(-1)$, $V_f(i) = V_f(-i) = 2k$. Also $e_f(1) = 4k + 1$ and $e_f(0) = 4k$. Therefore, f is a group difference cordial labeling of G.

Case (ii): $n \equiv 1 \pmod{4}$, Let n = 4k + 1, $k \ge 1$.

$$f(u_i) = \begin{cases} -1 & if & 1 \le i \le 2k \\ -i & if & 2k+1 \le i \le 4k+1 \end{cases}$$

$$f(v_i) = \{ \substack{1 \text{ if } 1 \le i \le 2k \\ i \text{ if } 2k + 1 \le i \le 4k + 1}$$

Clearly $V_f(1) = V_f(-1) = V_f(i) = V_f(-i) = 2k + 1$. Also $e_f(1) = 4k + 1$ and $e_f(0) = 4k + 2$. Therefore f is a group difference cordial labeling of G.

Case (iii): $n \equiv 2 \pmod{4}$, Let n = 4k + 2, $k \ge 1$.

$$f(u_i) = \{ \begin{array}{ccc} -1 & if & 1 \le i \le 2k+1 \\ -i & if & 2k+2 \le i \le 4k+2 \end{array} \}$$

$$f(v_i) = \left\{ \begin{array}{ll} 1 & if & 1 \le i \le 2k+1 \\ i & if & 2k+2 \le i \le 4k+2 \end{array} \right.$$

Clearly $V_f(1) = 2k + 2 = V_f(-1)$, $V_f(i) = V_f(-i) = 2k + 1$. Also $e_f(1) = 4k + 3$ and $e_f(0) = 4k + 2$. Therefore, f is a group difference coordial labeling of G.

Case (iv): $n \equiv 3 \pmod{4}$, Let n = 4k + 3, $k \ge 1$.

$$f(u_i) = \{ \begin{array}{ll} -1 & if & 1 \le i \le 2k+1 \\ -i & if & 2k+2 \le i \le 4k+3 \end{array} \}$$

$$f(v_i) = \{ \begin{cases} 1 & \text{if } 1 \le i \le 2k+1 \\ i & \text{if } 2k+2 \le i \le 4k+3 \end{cases}$$

Clearly $V_f(1) = 2k + 2 = V_f(-1)$, $V_f(i) = 2k + 2 = V_f(-i)$. Also $e_f(1) = 4k + 3$ and $e_f(0) = 4k + 4$. Therefore, f is a group difference coordial labeling of G.

References:

[1] Athisayanathan S, Ponraj R and Karthik Chidambaram M K, Group A cordial labeling of Graphs, International Journal of Applied Mathematical Sciences, Vol. 10,

- No.1(2017) pp. 1-11
- [2] Beaulah Bell I, Kala R, Group Difference Cordial Labeling of some Snake Related Graphs, Mathematical Statistician and Engineering Applications, Vol.71, No.3(2022)1972-1984.
- [3] Chait I, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin .23(1987)201-207
- [4] Gallin J A, A *Dynamic survey* of Graph Labeling, The Electronic Journal of *combinatorics Dec*7(2015)No.D56
- [5] Harary F, Graph Theory, Addison Wesley, Reading Mass, 1972
- [6] Ponraj R,Sathish Narayanan S and Kala R, Difference cordial labeling of graphs Global Journal of Mathematical Sciences: Theory and Practical,5(2013),185-196.