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Abstract— In parallel computing systems, job scheduling plays a crucial role in enhancing system efficiency and 

minimizing the makespan. In recent years, evolutionary and swarm intelligence algorithms have gained prominence 

as effective approaches for solving combinatorial optimization problems. In the present work, we have considered 

genetic algorithm (GA) for evolutionary algorithms and particle swarm optimization (PSO) for swarm intelligence 

algorithms. Evolutionary algorithms (EA) and swarm intelligence algorithms (SIA) have shown promising results in 

solving job scheduling challenges. In this study, we collate the performance of EA and SIA approaches for job 

scheduling on parallel machines. We use different benchmark instances to evaluate the algorithms' makespan and 

computational time performance. The results show that SIA algorithms outperform EA algorithms regarding 

makespan and computational time for all benchmark instances. Furthermore, the study provides insights into the 

strengths and weaknesses of EA and SIA algorithms for job scheduling on parallel machines. Our findings provide 

useful insights for researchers and practitioners interested in applying optimization techniques to solve job 

scheduling problems on parallel machines. 

Index Terms— evolutionary algorithms (EA), genetic algorithm (GA), job scheduling, meta-heuristics, 

optimization, parallel machines, particle swarm optimization (PSO), swarm intelligence algorithms (SIA). 

 
 

 

Introduction 

In the era of intelligent computing systems efficient job scheduling on parallel machines is crucial to maximize the 

system throughput and reduce job completion times. Tasks are assigned to machines during job scheduling in order 

to optimize performance indicators like makespan and resource utilization. Manufacturing and production 

industries, High-Performance Computing (HPC), Cloud Computing, Energy Management, Telecommunications, 

and more are a few of the fields for which job scheduling is used [13]. Researchers have investigated several new 

computational intelligence techniques, such as swarm intelligence and evolutionary algorithms, as viable solutions 

for efficient work scheduling to meet this challenge [3]. Natural selection and genetics are the foundations of 

evolutionary algorithms. They employ genetic operators like selection, crossover, and mutation to iteratively 

develop a population of candidate solutions. Based on predetermined objectives, the fitness of each solution is 

assessed, and the more fit individuals are given preference for reproduction, giving rise to future generations of 

possibly better solutions. Evolutionary algorithms can traverse the search space and converge on optimal or nearly 

optimal solutions due to this iterative process. Swarm intelligence, on the other hand, draws its inspiration from the 

group behavior of social insect colonies, where individual agents work together and coordinate to solve challenging 

issues [5]. Particle swarm optimization (PSO) and other swarm intelligence algorithms model the behavior of these 

swarms to discover the best answers. Particles in PSO move around the solution space by modifying their positions 
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in accordance with their personal and social knowledge, which directs them toward better solutions [8]. Numerous 

optimization issues, such as work scheduling on identical parallel processors, have been tackled effectively using 

both evolutionary and swarm intelligence techniques. These methods offer benefits like flexibility, adaptability, and 

the capacity to manage complicated optimization environments. However, depending on the features of the problem 

and the algorithm setups, their performance may vary. This comparative study compares and contrasts the efficiency 

of swarm intelligence and evolutionary algorithms for work scheduling on identical parallel machines. We'll look 

into how well they perform in terms of makespan, resource use, and convergence speed. We will also investigate 

how various algorithmic parameters and problem scenarios affect the performance of the algorithms. Researchers 

and practitioners can choose the best algorithm for their unique scheduling scenarios by taking into consideration 

each of their respective features. In summary, this research promotes improved system performance and resource 

utilization by advancing effective work scheduling methods in parallel computing systems. The structure of this 

article is as follows: The preliminary research is provided in Section II. The proposed work and problem 

formulation employed are presented in Section III. The experimental setup, including the algorithms, benchmark 

instances, and performance measurements, is described in Section IV. The findings of the comparative study and 

results are presented in Section V along with a discussion of them. Section VI concludes by summarizing the results, 

and future scope for further research in this area. 

Related Work 

The employment of evolutionary algorithms (EAs) and swarm intelligence algorithms (SIAs) for job scheduling on 

identical parallel machines has been an area of various studies in recent years [1]. The summary of the important 

results and contributions of earlier studies are highlighted in this section. Solmaz Abdi carried out one of the early 

studies in this field and suggested a genetic algorithm (GA), PSO, and Modified PSO for job scheduling on parallel 

machines [6]. Their strategy centered on reducing the makespan, or the overall amount of time needed to 

accomplish all jobs. To produce novel solutions, the GA used mutation and crossover operators in addition to 

permutation encoding. Swarm intelligence was used by PSO and Modified PSO to determine the optimal solutions 

[9]. The algorithms were able to locate almost ideal solutions for a variety of problem scenarios, according to 

experimental results. To explore scheduling theory and techniques Michael L. Pinedo proposed various kinds of 

scheduling, its research challenges and applications [2]. It is a comprehensive article that provides a thorough 

introduction to the theory, algorithms, and systems related to scheduling. It covers a wide range of scheduling 

problems and techniques, offering valuable insights into the fundamental principles and practical applications of 

scheduling in various domains. The study by Wei-ChangYeh addresses the issues of scheduling tasks on uniform 

parallel machines with a constraint on resource consumption [4]. The authors propose a mathematical model and 

develop a heuristic algorithm to find efficient schedules while satisfying the resource consumption constraint, 

demonstrating the applicability of their approach through numerical experiments [7]. The efficiency of these 

metaheuristic algorithms has been demonstrated in earlier studies for job scheduling on parallel machines. The 

investigations have shown that they can reduce makespan, find solutions that are close to optimal, and increase 

computing efficiency [10]. The performance of these algorithms in the context of job scheduling on identical parallel 

machines may be further improved with additional research into novel algorithmic variations, tuning of 

hyper-parameters, and problem-specific adaptations. 

Proposed Work  

The research study proposed in this article examines the Job scheduling on identical parallel machines using a 

comparative evaluation of various meta-heuristic algorithms, such as particle swarm optimization (PSO) and 

genetic algorithm (GA) with the objective to design a fitness function that minimizes the makespan and considers 

the satisfaction of various precedence constraints and machine eligibility restrictions. Precedence constraint is the 

relationship between two jobs and machine eligibility restrictions is the job running capabilities of a machine. These 

constraints to which the problem is subjected depict the real world scenarios of job scheduling. To improve the 

solution fine tuning techniques, testing and validating a set of benchmark instances from the literature are carried 

out. Additionally, conclusions are derived from the findings of both algorithms after conducting a number of 

experiments in order to comprehend their abilities and weaknesses. 
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A. System Architecture 

 

Fig 1: System Architecture 

The system architecture illustrates how the scheduling of n number of jobs on m identical parallel machines can be 

achieved by using meta-heuristics like evolutionary and swarm intelligence techniques. The system receives as input 

the number of jobs (n), the number of machines (m), and the processing times (Pj) for each job. Then, we employ the 

GA and PSO algorithms. We first set the hyper parameters, initialize the random population, and provide the 

constraints for jobs and machines. Then, the heredity chromosomes in evolutionary algorithms and the particles in 

swarms are represented as real numbers, which aids in determining the sequence and allocation of the jobs that need 

to be scheduled on machines. If the constraints are not satisfied repair and penalty techniques are used to fine-tune 

the solution. The final result is calculated in the form of fitness i.e. makespan. Finally, after testing for different 

scenarios the optimal solution is deployed and the result is visualized by a Gantt chart.   

B. Mathematical Formulation of the Problem 

A scheduling problem is represented as α | β | γ, where α is the machine environment, β is the characteristics of the 

job and γ is the performance indicator. The mathematical understanding of the job scheduling problem is that n jobs 

need to be scheduled on m machines in parallel with aim to minimize the total makespan. 

 

Minimize Cmax                                                                  (1) 

 

∑  xij = 1, ∀ j ∈ N ′                                                         (2) 

  i∈M 

 

δjk + δkj = 1, ∀ j, k ∈ N ′, j != k                                      (3) 

 

Ck ≥ Cj + pk, ∀ j, k ∈ A, j ! = k                                          (4) 

 

H(1 − xij ) + H(1 − xik) + Cj ≥ Ck + pj , ∀ i ∈ M, 

                                                            ∀ j, k ∈ A′′, j ! = k    (5) 

H(1 − xij ) + H(1 − xik) ≥ 1, ∀ i ∈ M, 

                                              ∀ j, k ∈ A′′′, j ! = k                 (6) 
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∑ xij = 1, ∀ j ∈ N ′                                                          (7) 

i∈Mj 

Minimize Cmax + penalty(ɸ)                                               (8) 

Where,  

i             Machine index 

j, k         Job indices 

Cj          Completion time of job j 

Cmax     Makespan 

m           Total number of machines 

M           Set of machines, M = {1, 2 . . . m} 

n            Total number of jobs 

N′           Set of jobs to be scheduled, N′ = {1, 2 . . . n} 

Mj          Machine eligibility restrictions for job j 

pj            Processing time of job j 

A′            Set of precedence constraints with jobs j and k to be       assigned on the same machine 

A′           Set of precedence constraints with jobs j and k to be       assigned on any machine 

A′′          Set of precedence constraints where job k cannot be       assigned after the completion of job j on 

machine i,      but can be assigned before the start  of job j on            machine i, or jobs j and k can be 

assigned on             different machines 

A′′′          Set of jobs j and k that need to be assigned on               different machines 

H            Large positive number, say 106 

xij          1, if job j is assigned on machine i           

            0, otherwise 

δjk          1, if job j precedes job k, directly or indirectly 

            0, otherwise 

ɸ             Penalty that will be added to makespan if any               of the mentioned constraints fails 

II. THE EXPERIMENTAL SETUP AND ALGORITHMS 

The experimental setup includes algorithms, different steps and their mathematical representation of the solution.  
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A. Evolutionary Algorithm (GA) 

 

Fig 2: Genetic algorithm 

Job scheduling task on identical parallel machines using swarm and evolutionary algorithms requires the solution to 

be represented in mathematical format so that the algorithms can decide the machine allocation and sequence of the 

jobs for execution. To increase the population variability, an initial population of N solutions is generated 

randomly. In this case, randomization is achieved by picking a randomly chosen job from the list of jobs and 

allocating it to a randomly chosen machine. A real value with an integer component and a fraction part is filled into 

each gene or particle in the representation of a solution. The integer portion represents a machine that will be 

selected at random and range from 0 to m - 1. Furthermore, a random number between 0 and 1 is chosen for the 

fraction component, up to two or more decimals. It is possible to choose a population size N that is sufficient to find 

the ideal solution more quickly with proper allocation and sequencing of Jobs. Genetics and the process of natural 

selection serve as the basis for GA. Each individual in the population serves as a potential solution (a job schedule) 

in the context of job scheduling and is endowed with a set of genes that encode the traits of that solution. 

Each individual in the population undergoes genetic operations like crossover and mutation to produce new 

offspring as the population changes over generations. Every generation measures the makespan of the 

corresponding job schedule to assess each individual's fitness. Individuals with higher fitness often have shorter 

makespans, and are more likely to be chosen for reproduction. The population selection and candidate solutions are 

improved over time as the algorithm iterates through multiple generations. Algorithm terminates when a workable 

solution is identified, and is met or reached a maximum number of iterations. When the GA terminates, it delivers 

the best solution found, it is the job schedule with the shortest makespan among all individuals in the final 

population. 

B. Swarm Intelligence Algorithm (PSO) 

 

Fig 3: Particle Swarm Optimization algorithm 
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PSO algorithm mimics the social behavior of the swarms and the particles have memory of the best solution 

encountered. In the context of job scheduling each particle can be represented as a potential solution (a job 

schedule) and has a position and velocity in the solution space. The fitness of each particle is calculated by 

measuring the makespan of the corresponding job schedule [11]. The velocity of each particle is adjusted based on 

its previous velocity, its personal best solution, and the global best solution. The position of each particle is updated 

according to its new velocity. The algorithm Iterates through the evaluation steps until termination condition is 

reached. Once the algorithm terminates, it returns the best solution found, which corresponds to the job schedule 

with the minimum makespan. 

Results And Discussion 

The trials are parted into sections for detailed analysis. In the initial phase, we kept the number of jobs and machines 

constant while adjusting the population and iterations. To examine how other parameters could impact outcomes, 

we increased the number of jobs. In addition to that we adjusted the number of machines in the second simulation 

while maintaining the population and iteration counts. To obtain an optimal schedule with the fulfillment of 

precedence constraints and machine eligibility restrictions we have considered some of the important benchmark 

metrics for both the algorithms and compared their results. 

 

 

 

 

 

Fig 4: Experiment I GA vs PSO 

 

 

 

 

 

 

 

 

 

 

 

Experiment I 

Parameters GA PSO 

Number of jobs 12 12 

Number of machines 3 3 

Number of population 50 50 

Number of iterations  10 10 

Number of generations  

required to converge  

1 3 

CPU time  0.04 0.02 

Fitness 179 175 

Experiment II 

Parameters GA PSO 

Number of jobs 12 12 

Number of machines 3 3 

Number of population 100 100 

Number of iterations  20 20 

Number of generations  

required to converge  

3 3 

CPU time  0.16 0.08 

Fitness 176 174 
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Fig 5: Experiment II GA vs PSO 

 

 

Fig 6: Experiment III GA vs PSO 

 

 

 

 

Fig 7: CPU time, Convergent generations count and Fitness vs Iterations 

The constraints considered in the experiments depict the real time scenarios in job scheduling, Equation (1) 

discusses minimizing the makespan, while equation (2) ensures sure that a job j is only ever allocated to machine i 

once. The constraints (3) and (4) govern the order of the jobs they make sure that jobs j and k are assigned to the 

same machine and follow the precedence constraint j k, but not necessarily that job j comes just after job k. Either 

Experiment III 

Parameters GA PSO 

Number of jobs 12 12 

Number of machines 3 3 

Number of population 150 150 

Number of iterations  50 50 

Number of generations  

required to converge  

6 5 

CPU time  0.61 0.28 

Fitness 175 174 
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or function is supported by the constants (5) and (6). Equation (7) depicts the machine eligibility constraint. 

Equation (8) describes the calculation of the makespan, if any of the conditions are not met, the algorithm first tries 

to repair it; otherwise, it adds the penalty to the total makespan. In comparison to GA, PSO tends to be more 

sensitive to its hyperparameters. PSO necessitates fine-tuning parameters like the inertia weight (w), cognitive (c1), 

and social (c2) coefficients. The population size, crossover, and mutation rates, as well as the selection process, are 

some of the hyperparameters unique to GA that need to be adjusted. Following a series of tests and references to 

earlier literature, the PSO parameters are set to 0.5 (w), 2 (c1), and 2 (c2). The GA's mutation rate, crossover rate, 

and selection rate are each set to 0.1, 0.5, and 3, respectively. The effectiveness of the algorithm's solution and its 

decision-making capacity are significantly influenced by the tuning of these parameters. 

 

Experiment IV 

Parameters GA PSO 

Number of jobs 15 15 

Number of machines 3 3 

Number of population 100 100 

Number of iterations  50 50 

Number of generations  

required to converge  

8 4 

CPU time  0.42 0.19 

Fitness 205 204 

 

 

Fig 8: Experiment IV GA vs PSO 
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Fig 9: Experiment V GA vs PSO 

 

Experiment VI 

Parameters GA PSO 

Number of jobs 15 15 

Number of machines 5 5 

Number of population 100 100 

Number of iterations  50 50 

Number of generations  

required to converge  

9 4 

CPU time  0.46 0.17 

Fitness 135 129 

 

Experiment V 

Parameters GA PSO 

Number of jobs 15 15 

Number of machines 4 4 

Number of population 100 100 

Number of iterations  50 50 

Number of generations  

required to converge  

2 5 

CPU time  0.41 0.20 

Fitness 160 155 
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Fig 10: Experiment VI GA vs PSO 

 

 

Fig 11: CPU time, Convergent generations count and Fitness vs Machines 

The first phase of the tests involves changing the population to 50, 100, and 150 while maintaining the same number 

of jobs and machines. Adjustments are made to the number of iterations to 10, 20, and 50. The following testing 

phase has increased the number of jobs to 15, altered the number of machines to 3, 4, and 5, and left the population 

(100) and iterations (50) unchanged. Parameter modifications have been made to better assess the algorithms' 

effectiveness in exploring and using search space, as well as the impact of these parameters on the quality of the 

solution provided. This strategy helps to obtain the optimal makespan in less time possible. While analyzing the 

results, minimum makespan in less amount of time was one of the primary benchmark instances. The importance of 

minimal makespan in the job scheduling can be attributed to a number of factors. It serves as a gauge of the 

schedule's effectiveness first. A shorter makespan schedule is more effective than a larger makespan schedule. 

Second, a minimal makespan can be employed to increase resource utilization. Resources can be used more 

effectively by planning jobs in a way that minimizes makespan. Third, deadlines can be met by using minimal 

makespan. A scheduler might need to discover a technique to reduce makespan if a deadline is drawing near so that 

they can meet it. Overall, the minimum makespan should be taken into account while planning jobs. Schedulers can 

increase the effectiveness of their schedules, make better use of their resources, and fulfill deadlines by minimizing 

makespan. Swarm based algorithm particle swarm optimization  outperformed the evolutionary genetic algorithm  

in terms of CPU time, fitness (makespan), and the number of generations needed to converge after a detailed 

analysis of a set of trials carried out in two phases. The fact that swarm-based algorithms convey the best solution to 

the subsequent generation is one of the main factors contributing to their superior performance in optimization 

issues. However, in evolutionary algorithms, the memory is constrained to the current population. Figures 10 and 

11 and the computational tables in this article unambiguously demonstrate how the algorithms PSO and GA 

performed when they were subjected to various constraints and benchmark conditions. PSO's faster convergence 
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makes it more effective than GA for solving parallel problems. This is significant because it might be challenging to 

handle job scheduling problems because they are often NP-hard. PSO can solve these issues more quickly than GA, 

which can result in a reduction in time and resources. PSO is also more resistant to noise and outliers than GA. The 

reason for this is that while GA has a local search approach, PSO employs a global search strategy. Even if the 

problem data is noisy or contains outliers, a global search technique is more likely to uncover credible solutions. 

Conclusion And Future Scope 

According to the outcomes of the research, Particle Swarm Optimization (PSO) outperformed Genetic Algorithm 

(GA) in the comparative study on task scheduling for identical parallel machines using evolutionary and swarm 

intelligence techniques. PSO showed greater performance in terms of job schedule optimization, CPU time, 

parameter sensitivity, leading to increased effectiveness and reduced makespan. Better solutions were produced as 

a result of the effective exploration and exploitation of the search space by PSO's swarm intelligence technique. 

These results demonstrate the potential of PSO as a robust and efficient technique for job scheduling on identical 

parallel machines, highlighting its superiority over GA in this specific application. The intent of this research's future 

work is to explore the hybridization of evolutionary and swarm intelligence based algorithms to create more reliable 

and effective employment scheduling techniques and deploy for real time data. Additionally, testing these 

algorithms' scalability and practical applicability on larger problem instances, scheduling with uncertain parameters, 

and realistic circumstances will aid in their validation. 
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