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Abstract:-In the rapidly evolving domain of software development, the imperative for reliable tools to gauge 

code quality and offer invaluable insights has reached a critical juncture. This research paper introduces an 

ingenious Automated Code Analysis (ACA) system meticulously crafted to cater to the unique requisites of both 

developers and students. ACA transcends the conventional boundaries of code evaluation by not only 

scrutinizing source code but also bestowing users with the gift of automated software metrics, actionable 

feedback, and profound analyses. This paper presents an exhaustive panorama of ACA, emphasizing its 

fundamental attributes, expansive capabilities, and the transformative influence it holds over software 

development methodologies. The dynamic nature of modern software development demands tools that not only 

adapt but also innovate. ACA embodies this spirit of adaptability and innovation, delivering an all-

encompassing solution that empowers its users to elevate their coding prowess. Beyond conventional code 

scrutiny, ACA harnesses the power of data-driven metrics, facilitating informed decisions and insights into 

codebase enhancements. This paper embarks on a journey through the intricate realm of ACA, unearthing its 

potential to redefine code analysis practices, embolden developers and students alike, and cultivate a culture of 

code excellence. The study delves deep into ACA's intricate architecture, exploring how it transforms software 

development paradigms by equipping practitioners with the means to not just evaluate code but to perfect it. 

With ACA at the helm, software development enters an era where precision, efficiency, and excellence 

converge, propelling the industry towards uncharted horizons of innovation. 

Keywords: automated code analysis, software metrics, code quality, code complexity, software development 

tools 

Introduction 

The realm of software development is witnessing unprecedented growth and innovation, with an increasing 

emphasis on software quality and measurement. As the software landscape becomes more intricate, the demand 

for automated tools to assess and enhance code quality has surged. This paper introduces an original Automated 

Code Analysis (ACA) system designed to address the unique challenges faced by developers and students in 

today's software development ecosystem. 

Unlike conventional code analysis tools, ACA stands out as a comprehensive solution that offers a wide array of 

functionalities tailored to the needs of its users. It not only evaluates source code but also equips users with 

automated software metrics, providing actionable insights to optimize their coding practices. ACA's capabilities 

extend beyond mere code analysis; it serves as a valuable resource for developers and students seeking to 

improve their coding skills and produce higher-quality software. 

The existing landscape of code analysis tools presents certain limitations, including a lack of structured metrics, 

limited user interaction, and an inability to relate metrics to external software quality attributes. ACA was 

developed to overcome these challenges and provide a more holistic approach to code analysis. By categorizing 

metrics into key areas such as code complexity, size, and maintainability, ACA offers a comprehensive view of 

software quality, enabling users to make informed decisions and improvements in their codebase. 
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This paper will delve into the core features and functionalities of ACA, illustrating how it can enhance the 

software development process. The study will explore its potential to revolutionize code analysis practices, 

empower developers and students, and ultimately contribute to the creation of higher-quality software in an 

increasingly complex software development landscape. 

A background study of the software metrics is given in the next section. Complexity metrics which have been 

proposed mainly based on the cognitive aspect are given insection3. The methodology that was used to build the 

web application is discussed in section 4. Section 5 proposes the overview of the system. And section6 proposes 

the result and discussion of the paper. Finally, the conclusion of the paper is given in section 7. 

1. Background Study 

In the ever-evolving landscape of software development, the need for robust tools to assess code quality and 

provide valuable insights has become paramount. As the software landscape becomes more intricate, the 

demand for automated tools to assess and enhance code quality has surged. This paper introduces an original 

Automated Code Analysis (ACA) system designed to address the unique challenges faced by developers and 

students in today’s software development ecosystem. 

A. Importance of Software Complexity Metrics 

Software Complexity metrics offer valuable insights into the quality of codebases. They provide a means of 

detecting issues and improving software quality, facilitating more effective planning and decision-making 

throughout the development lifecycle by reducing time and effort. However, the existing landscape of code 

analysis tools presents certain limitations, including a lack of structured metrics, limited user interaction, and an 

inability to relate metrices to external software quality attributes. 

B. The Weighted Composite Complexity (WCC) Measure 

To address the limitation of single-factor complexity metrics, Chhillar and Bhasin proposed the Weighted 

Composite Complexity (WCC) measure. This innovative approach considers multiple factors to measure code 

complexity effectively. WCC incorporates four key factors: Inheritance level of classes (Wi), Type of control 

structures in classes (Wc), nesting level of control structures (Wn), and the size of a class in terms of token 

count. By assigning different weights to these factors, the WCC measures provides a more accurate 

representation of code complexity. 

C. Integration of WCC Metrics with ACA 

In the context of the project, the study aims to leverage the Weighted Composite Complexity (WCC) metrics in 

a unique and innovative manner through the Automated Code Analysis (ACA) system. The project seeks to 

enhance the coding experience by introducing syntax highlighting based on WCC values. This approach aligns 

with recent research by Chhillar and Bhasin, who demonstrated the importance of understanding program 

complexity. 

By integrating WCC metrics with syntax highlighting within ACA, developers can gain real-time insights into 

the quality of their code. This integration allows them to identify potential complexity hotspots and make 

informed decisions during development. Such as approach aligns with the principles of developer-centric 

analysis, emphasizing the importance of effective decision-making throughout the software development 

process. The integration of WCC- based syntax highlighting can significantly enhance the coding experience, 

making ACA a valuable resource for developers and students alike. 

In summary, software complexity metrics, particular the Weighted Composite Complexity (WCC) measures, 

offer a promising avenue for improving code quality assessment. By integrating WCC metrics into the 

Automated Code Analysis (ACA) system and its integration with the Weighted Composite Complexity (WCC) 

metrics. It provides a more structured and comprehensive overview, helping readers understand the significance 

of our research in the field of software development. 
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2. Cognitive Based Complexity Metrics 

In the realm of software development, Cognitive Based Complexity metrics have emerged as crucial tools for 

evaluating the software systems. These metrics, introduced over the years by various research, aim to quantify 

software complexity by considering a range of factors. They encompass Cognitive weights assigned to basic 

control structures, the cognitive impact identifiers, operators, and lines of codes, as well as architectural aspects 

and inheritance. Notable metrics such as Cognitive Functional Size (CFS), Cognitive Weight Complexity 

Measure (CWCM), and Weighted Class Complexity (WCC). 

In 2011, Sanjay Misra, Akman and Koyuncu presented the Cognitive Code Complexity measure (CCC), 

designed to evaluate the design of object-oriented (OO) programs. CCC operates in three stages, with the initial 

stage calculating complexity at the method level using cognitive weights assigned to Basic Control Structures 

(BCS). Notably, CC also incorporates the inheritance aspect, which influence the overall program complexity 

assessment in the third stage [6]. In the same year J.K. Chhabra introduced the Code Cognitive Complexity 

measure (CCC). This metric considers factor such as the absolute distance in terms of Lines of the Code (LOC) 

between a module’s call and its use, input and output parameters, and Cognitive Weights. Significantly, Chhabra 

expanded the cognitive weights to encompass variable and constant data types [7]. The other metric was 

Chhillar and Bhasin CB measure [8]. It computed the complexity of a program using the following four factors. 

D. Inheritance 

A weight of zero, denoting executable statements suited in the base class. As ascend the inheritance hierarchy, a 

weighted of one is attributed to statements within the first derived class. Subsequently, this weigh increases 

incrementally, with each higher-level derived class receiving a weighted that is one unit higher than its 

predecessor. This hierarchy-based weight assignment method provides a means of quantifying the influence of 

inheritance on program complexity. 

E. Type of control structures 

Distinct weightings are assigned to different categories of control structures, which serves to reflect their 

inherent complexity. Sequential statements, considered relatively straightforward, are assigned a weight of zero. 

In contrast, conditional control structures are ascribed a weight of one, denoting a higher degree of complexity. 

Iteratively control structures are allocated a weight of two, signifying their even greater complexity. 

F. Nesting level of control structures 

Sequential statements are ascribed a weight of zero, reflecting their position as the least complex. Nested control 

structures, statements at each subsequent inner level receive higher weightings. This hierarchical weight 

assignment mechanism captures the increasing intricacy associated with statements embedded within nested 

constructs. 

G. Size 

The size of an executable statement is another vital dimension of program complexity assessment. This metric is 

determined by quantifying the constituents within a statement, including operators, operands, functions, and 

strings. Counting these elements provides an objective measure of the statement’s complexity. 

The CB metric is a good measure, it could be transformed into a more accurate measure by incorporating 

another three factors. The ICB measure introduces additional factors to assess code complexity beyond what the 

CB measure accounts for. 

H. Compound conditional statements 

Which involve "&&" or "||" logical operators. In the ICB measure, each of these operators is assigned a weight 

of one. This adjustment aims to reflect that each such operator increases the number of conditions checked by a 

decision statement. Unlike the CB measure, which treats all decision statements equally, the ICB measure 

distinguishes between simple and compound conditions. 
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I. Threads 

In contrast to the CB measure, which adds a constant value of one for each operator, operand, method or 

function, and string in a statement, the ICB measure assigns a constant value of two to statements involving 

thread invocations. This distinction allows the ICB measure to capture the added complexity associated with 

threads. 

J. Recursion 

When assessing the impact of recursion, one first multiplies the size (S) of each statement within the recursive 

function by their respective weight (W) values. Following this calculation, the resulting values are then added to 

the overall ICB value of the program under evaluation. 

The ICB measure provides a more nuanced evaluation of software complexity by considering compound 

conditional statements recursion, and accounting for the impact of threads, offering a potentially more accurate 

assessment of program intricacy than the CB measure alone. 

3. Methodology 

The utilization of IEEE standards in the creation of the code analyzer was imperative. This decision was driven 

by the recognition that in the pursuit of crafting software that is both of exceptional quality and meticulously 

organized, strict adherence to established industry standards is indispensable. 

Across the entire software product lifecycle, software quality engineering is characterized as the systematic and 

structured administration of quality standards. To effectively endorse this concept, any alternative methodology 

should possess the capability to replicate the delineation of quality criteria, generate reports, assess code, and 

enhance the overall quality of the software. 

The choice of the IEEE Standard 1061's "Software Quality Metrics Methodology" as the foundation for this 

project was made due to its highly appropriate framework for modeling software quality engineering practices.  

Illustrated in Figure 1, the software quality metrics framework, as outlined in IEEE Standard 1061, exhibits a 

hierarchical arrangement and is intentionally crafted to offer adaptability. The initial phase within this 

framework involves the commencement of quality requirements, which serve to define the software's quality. 

These requirements are subsequently associated with specific quality attributes. Importantly, the framework 

allows for the inclusion, removal, and adjustments of quality factors and metrics [10]. 

 

 

 

 

The software quality metrics methodology provides organizations with a structured five-step approach for 

handling software processes. The specific details of these five steps and the process employed during the 

implementation of ACA are outlined below[10]. 

K. Initiate software quality requirements 

 Identify quality requirements. 

 Determine quality requirements. 

 Quantify each quality factor. 

During the process of identifying quality requirements, the study has emphasized that the following aspects of 

the software hold the utmost significance for evaluation. 

Fig. 1. Software quality metrics framework 
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 Size of the Statement. (Based on tokens) 

 Type of control structures. 

 Nested level of control structures. 

 Inheritance level of statements. 

 Conditional compound statements. 

 Threads. 

 Recursion. 

L. Determining Software Quality Metrics 

 Utilize the software quality metrics framework 

 Conduct a cost-benefit analysis 

For each of the identified quality aspects, the decision was made to calculate the following Software Metrics to 

measure and assess the software's quality. 

M. Implement the Metric 

 Establish the procedures for data collection. 

 Create a prototype of the measurement process. 

 Gather the necessary data and calculate the metric values. 

N. Examine the Metrics Results 

 Interpret and analyze the outcomes. 

Compare the computed metric values with the user-defined threshold metric values. 

O. Validate the Software Quality Metrics 

 Execute the validation process. 

 Employ specific validity criteria. 

To ensure the quality metrics' validity, tests were conducted, and comparisons were made between the ACA's 

metric values and the real metric values. 

4. System Overview 

In accordance with the five steps outlined previously, ACA was specifically crafted for the purpose of 

determining the ICB [1] metric. The primary functions of this research can be summarized as follows: 

 Develop a web application for analyzing source code using the ICB metric. 

 Calculate metric values for a given code section based on the established metric framework. 

 Present numerical representations of the computed metric values. 

 Visualize measurement results through graphs for a more interactive user experience. 

 Provide a comprehensive interpretation of the analysis outcomes, ensuring users gain a thorough 

understanding of the characteristics of the specified code portion. 

 Allow users to input threshold values for factors, enabling them to apply their own criteria for evaluating their 

work. 
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 Display the source code and the relevant metric value in tabular format to make it easy for the users to 

understand the code. 

To implement the proposed web application Visual studio code, ReactJs, NodeJS, ExpressJS, MongoDB, and 

Chevrotain were used. 

5. Result and Discussion 

The implemented ACA will show the result of the analysed code that was given to the system. And it performs 

many other functions. Some of these functions are demonstrated in Fig 2, Fig 3, and Fig 4. 

 

 

 

 

 

Fig. 2. Sample code to analyse. 

 

 

 

 

 

 

 

 

Fig. 3. Main interface after analysing the code and showing the output of the result. 

 

 

Fig. 4. Sample graphical interface 
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In Fig 2, the provided sample code serves as the test case for Automated Code Analyzer. Figs 3 and 4 represent 

the outcomes of the code analysis. 

Fig 3 details the systematic analysis process, wherein the system evaluates each statement individually. It 

computes several metrics, including the statement's size, inheritance attributes, type of control structure 

employed, nesting level within control structures, the cumulative weight associated with each statement, and the 

product of statement size and weight. By aggregating these details for all statements, the system calculates the 

total ICB value for the analyzed code. 

Moving on to Fig 4, it presents a graphical representation in the form of a bar chart. This chart provides insights 

into various aspects of the analyzed code, such as the count of single-line and multiline statements, code lines in 

general, occurrences of if-else constructs, the presence of classes and methods, as well as the utilization of for 

and while loops. These visualizations offer a concise overview of the code's structural characteristics and assist 

in comprehending its complexity and composition. 

6. Conclusion 

The overall goal of this research project can be summarized by saying that project members have created a well-

structured web application for source code analysis based on the ICB metric calculation, especially for 

developers, which will help them a carry out their functions more effectively. 

The study’s aim was to construct a precise code- analyzing tool with the calculation of thread statements and 

compound statements in addition to inheritance levels of statements, control structure types, nesting levels of 

control structures, and program size. With the help pf the ACA, we were able to accomplish this goal. The 

following can be done to enhance ACA release in the future: 

 Extend the application to handle programming languages such as C, C++, JavaScript, PHP, and Python. 

 Improve the efficiency, reliability, and user friendliness of the application.  
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