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Abstract:-.Breathing rate (BR) is an important physiological factor that is commonly measured in many 

treatment settings. Though it is still routinely measured by hand. In this study, a novel approach for determining 

the BR from an ECG, photoplethysmogram, or blood pressure signal is proposed. To extract respiratory signals 

from time and frequency domain data, the framework employs Discrete Wavelet Transform and Empirical 

Mode Decomposition techniques. Because we used a Robust Kalman Filter with a Signal Quality Index, our 

technique worked effectively even when the signals were severely damaged. The output signals have been 

integrated by state vector fusion, and the BR has been established. Two openly available clinical databases, the 

MIT-BIH Polysomnographic and the BIDMC datasets are used. The mean absolute percentage error was used to 

assess performance. The results were very accurate; PPG signals had MAPEs of 7% and BP signals of 5.4%, 

whereas ECG signals on the two databases had MAPEs of 4% and 4%, respectively.Additionally,the results 

revealed an astounding robustness to noise at 0 db. In light,this technique may be beneficial for BR monitoring 

in noisy areas. 
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1. Introduction 

Patients' breathing rates are monitored as valuable physiological markers in a range of settings, which 

encompass hospital wards, intensive care units, and emergency rooms.A sensitive sign of patient deterioration, 

BR has been demonstrated to be. Elevated BRs, for instance, could be a sign of respiratory or cardiac failure. A 

predictor of in-hospital mortality can be created using BR.  

BR is also used to diagnose sepsis and a number of other illnesses, including pneumonia. Direct respiratory 

monitoring sensors are available based on methods like spirometry, pneumography, or plethysmography. These 

sensors are used only in specialized clinical situations, such Because they can disrupt breathing patterns and be 

used to diagnose sleep apnea, stress testing intrusive. Patients may prefer less invasive respiratory monitoring 

methods, potentially leading to their broader adoption across various clinical scenarios. 

The blood pressure signal, alongside other commonly observed physiological markers, can be influenced by the 

electrocardiogram, photoplethysmogram, and breathing. Baseline wander, amplitude modulation, and frequency 

modulation are three completely different approaches that show how the physiologic characteristics of breathing 

affect the results of ECG, PPG along with BP. Before you can understand the breathing rate, you must be 

familiar with the several techniques for extracting ECG, PPG, and circulation data signals from the respiratory 

system. 

Taking into account the information generated by the ECG, PPG, and BP, the current research investigation 

used a specially developed algorithm to estimate BR. The overview that follows comprises a list of the 

engineering techniques used throughout the development of this framework. Empirical Mode Decomposition, 

ECG-Derived Respiration, PPG-Derived Respiration, and other respiratory measurements based on discrete 

wavelet transform or BDR signals (BP-Derived Respiration signals) are all examples of respiratory statistics the 

fact that are processed using these two tactics. They are frequently utilized with ECG signals. 

We used both EMD and DWT together to boost the estimator's performance because they are not incomparably 
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better than one another. It is common practise to estimate BR using Power Spectral Density, a measurement of a 

signal's power throughout the spectrum of frequency content, after obtaining a respiratory signal. In order to 

increase robustness against noise, by averaging the power spectra built up from shorter fragments of the input 

signal, the Welch periodogram is an empirical method towards quantifying the PSD. PSD is commonly used in 

BR estimation algorithms. 

2. Related Works 

The objective of analyzing breathing rate estimation using adaptive techniques is to provide a valuable tool for 

monitoring and assessing an individual's well-being, whether in a medical, fitness, or stress management 

context. It aims to improve the adaptability, and utility of breathing rate estimation in various scenarios, 

ultimately benefiting the health and well-being of individuals By integrating ECG and PPG data with a robust 

Kalman filter-based approach, the objective is to provide a highly accurate and adaptive system for estimating 

breathing rates.Using a Kalman filter and making it robust to noise and disturbances, the aim   is to enhance the 

accuracy and reliability of breathing rate estimation, making it a valuable tool in scenarios where data quality 

may be compromised or subject behavior varies significantly. 

3. Methodology 

The suggested algorithm, which is depicted in Fig. 1, can be summed up as follows. First, high-frequency noise 

and DC components are removed from aPre-processing may involve an PPG, ECG, or BP signal. Afterwards, 

DWT and EMD techniques are used to separate the signals into their constituent parts. You can use the EDR, 

PDR, or BDR signals' PSDs to measure the respiratory signal components identify them. Thirdly, each 

respiratory signal's noise is removed by calculating the SPI each respiratory signal over time, adding an EKF, 

and then. In the noisy, complex environments, the significance of the signal quality parameter poor-quality 

sections of the EKF. And last, just one respiratory signal is derived using state vector fusion. Finally, a peak 

detection method is used to estimate the BR from the collected respiratory signal. 

Pre-Processing: 

Since it is believed that the lowest breathing rate is 5 breaths per minute (0.083Hz), the cut-off frequency for 

this filter has been set at 0.08Hz. Blood pressure, ECG, and PPG data are processed to eliminate the DC 

component using a third-order Butterworth high-pass filter. To remove high-frequency noise, an 11-frame 

moving average filter is employed. 

  

Fig1.A blood pressure, an electrocardiogram, or a photoplethysmogram signal can be used to estimate 

breathing rate, as shown in the method's suggested block diagram. 
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Extracting Respiratory Signals: 

The DWT methodology, along with the EMD and its modified algorithm, are two often used methods for 

effective decomposition and information extraction from breathing. To extract a series of breathing signals, 

these techniques use ECG, PPG, or BP input signals. The EMD approach yields three respiration signals, while 

the DWT method produces four, as illustrated in Fig. 1. Let's now delve into discussions regarding the DWT 

and EMD approaches. 

EMD-based techniques 

EMD is a flexible, nonlinear signal processing technique for non-stationary signals that is entirely data-driven. 

Intrinsic mode functions are qualified as zero-mean, amplitude- and frequency-modulated functions to represent 

the original signal in order to decompose time series into their constituent pieces. plus, a residual. Local 

structural and temporal characteristics are both utilized in this process. The following criteria are met by every 

IMF: 

 In addition, there ought to simply be one peak, or an equal number of positive and negative peaks, and zero 

crossings;  

 The means of the upper and lower envelopes must both be zero. When a signal has an intermittent process, 

mode mixing becomes a concern. When many IMF components contain a signal with a similar scale or a signal 

with scales that are noticeably different from one another, this is referred to as mode mixing. Because of this 

phenomenon, it is unclear what physiological importance each IMF has. This issue is addressed by suggesting 

utilizing a NADA approach, or noise-aided data analysis.  

 

 Fig2.Diagram of the EEMD algorithm, which is based on the EMD algorithm 

Assuming that white noise has the capacity to create the ones that follow This notion serves as the foundation 

for ensemble empirical mode decomposition, which builds itself on a uniformly distributed scale in time-

frequency space. The EEMD a viewpoint automatically maps signal components of different magnitudes onto 

the most suitable scales of reference by introducing white noise as background noise to the signal. The method 

known as Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, as its name suggests, has 

been shown to be a significant improvement over EEMD.In two ways, CEEMDAN performs better than EEMD: 

it achieves a low reconstruction error and fixes the problem of the variable number of modes for varied 

Realizations of the signal plus noise, CEEMDAN, and EEMD methods. Each of the two flowcharts in Figs. 

Figures 2 and 3 depict the steps required to put the EEMD and CEEMDAN approaches into practise.  

The PSD of each IMF inside the 6dB band, which has the largest amplitude, has been found to be the frequency 

range where each IMF dominates. computed in order to discover which IMFs have respiratory content. The next 
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step entails analyzing whether the frequency spectrum of an A respiratory wave (about between 6 and 33 bpm 

[0.10Hz, 0.55Hz]) matches with that of a signal's EDR, PDR, or BDR status depends on the IMF. 

After acquiring the EDR and PDR signals from a 60-second frame of ECG and PPG data received from 

BIDMC01, unwanted components were eliminated using the EEMD, CEEMDAN, and EMD methods. The 

primary frequency ranges of the EDR/PDR signals and the reference respiratory signal are depicted by dashed 

red and green lines, respectively. Surprisingly, the principal frequency bands of the EDR and PDR signals 

produced by the CEEMDAN method exactly match the fundamental frequency band of the reference respiratory 

signal. 

Discrete Wavelet Transform: 

Using the EMD, EEMD, and CEEMDAN approaches, we converted a 60-second chunk of the ECG and PPG 

signals from BIDMC01 into EDR and PDR signals. The corresponding taking-priority frequency ranges of the 

reference respiratory signal and the EDR/PDR signals are depicted by dashed red and green lines, respectively. 

The main objective of the CEEMDAN theory is to generate recognizable frequency bands in the PDR and EDR 

signals that closely resemble the reference respiratory signal's key frequency band. 

The PSDs of each detail signal were determined using these wavelet functions after the DWT was applied.  

In their eighth research, A detailed signal comprising respiratory information had been juxtaposed to the EDRs 

Symlet and Daubechies resulting based on PPG and ECG data from 60-second intervals (from BIDMC01). The 

DWT with four wavelet functions produced these EDR signals by largely matching the primary frequency range 

([0.10Hz, 0.55Hz]) of the reference respiratory signal, which is produced by the PSDs. 

They outperformed Symlet and Daubechies 4th, as seen by this. the 4th and 8th order wavelet functions' 

performance information. All four of the aforementioned mother wavelets were created with PDRs, although 

they perform worse than EDRs due to their similar dominant frequency bands. 

     

 Fig3.  Flow diagram for the EEMD-based   CEEMDAN algorithm. 

Signal Quality Assessment: 

Hjorth parameters were first proposed to extract information from the EEG signal's power spectrum as measured 

using spectrum moments. The  spectral moment of an indication's nth order w̅n. 

 w̅n =  𝑤𝑛 𝑃(𝑒𝑗𝜔 ) 𝑑𝑤
𝜋

−𝜋
 

The EMD, EEMD, and CEEMDAN algorithms were utilized to separate the EDR and PDR signals from a 60-

second section of the ECG and PPG data that BIDMC01 had recorded. The dashed red and green lines represent 

the three fundamental frequency portions of the EDR and PDR signals, respectively. Similarity between the key 

frequency bands of the EDR and PDR signals generated by the CEEMDAN method and the main frequency 
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band of the reference respiratory signal can be seen. 

In this case, L represents the window time, specifically L equals 4 seconds. Additionally, the notation x
(i/2)

 (k) 

symbolizes the i/2 derivative of x(k). 

ѡ ̅ĩ  ≈
2𝜋

𝐿
  (𝑥 

𝑖

2
  𝑘 𝑛

𝑘=𝑛−(𝐿−1) )
2 

The SPI pursues an index capable of assessing signal quality leveraging Hjorth descriptors. Here, we are 

utilizing SPI as a SQI in the manner outlined below to assess the signal quality: 

ℾ SPL(n)=
w̅2  n 2

w 2 n w 4(n)  

ℾ SPI indicates the signal quality and runs from 0 (which represents all noise) to 1 (which represents a pure 

sinusoid), correspondingly, for low and good signal quality. Using the PPG signal of BIDMC01 as an example, 

the SPI variance approaches 0 during times of low quality and 1 during times of good quality. 

Robust Kalman Filter 

The proposed algorithm currently contains seven respiratory signals, each of which has a matching SQI 

parameter. The respiratory signals can be made better by applying a EKF or RKF at this stage. Both a EKF and 

an RKF are capable of denoising a signal before reconstructing it with a dynamic model. The only model that a 

EKF can take is a linear one, whereas an RKF can accept a dynamic nonlinear model.  

Because the linearization procedure used with a EKF can decrease a model's accuracy, an RKF might perform 

better than a EKF. This study optimizes the RKF using the SQI parameter. The EKF and RKF are now 

explained in detail. A well-known Minimum Mean Square Error model is the EKF. It has been demonstrated 

that the aforementioned filter performs better when an approximation of the ideal state is used. The EKF and 

RKF applications will be thoroughly explained here. The phrase is Minimum Mean Square Error. it has been 

shown that the EKF is the best filtertechnique for estimating optimal states. 

When utilizing the EKF to approximate nonlinear dynamical models in linear form, the estimation accuracy 

must first be reduced due to the fact that the majority of systems in practise are nonlinear. The RKF is an 

expansion of the basic EKF that considers a stochastic signal's states using a nonlinear dynamic estimate. The 

state model used in this study is based on the dynamic equations of McSharry et al.  

There are three paired ordinary differential equations in the dynamic model. The RKF calculates the state vector 

during the course of the time propagation step using the initial a signal's nonlinear dynamical model. In order to 

estimate the state vector, each  iteration of the RKF uses an interaction between a dynamical model and data 

produced by the Kalman Gain. An inverse relationship exists between the KG and the R-value for the 

covariance that of the measuring noise. Lower KG values result from measurements of poor quality since they 

produce higher R values. Throughout each cycle, KG's value is decreased. the influence of measurements on 

estimation is lessened, and vice versa. The following gives an example of how R can be multiplicatively 

modified: 

Rn→Rn𝑒(𝑆𝑄𝐼𝑛
−2 −1) 

In this study, SPI is used in place of SQI n, the SQI of the nth sample of data, as follows:   SPI[n] = SQIn 

The value of SPI [n] tends to zero for low-quality portions of the signal. As a result, Rn's value trends towards 

infinity and KG gets closer to zero. This shows that the dynamical model is used to accomplish the estimation 

for the low-quality portions of the signal. Due to the RKF's property, we can estimate the signal accurately even 

for severely distorted portions of the signal. 

State Vector Fusion:  
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There are seven respiratory signals present at this level of the proposed algorithm. After that, to turn the seven 

signals into Fusion of state vectors is done on a single respiratory signal. The state error covariance matrices 

produced by RKF are used to analyses the local estimate signals. mixed in the manner described below based on 

the MMSE: 

 xn =  ( (𝑃𝐽
𝑗=1

j 
n )

-1
)
 -1  [(𝑃𝑛

𝑗𝐽
𝑗=1 ) -1  

̄x
j
n ] 

And a projection of the state known as xn exists for each of n iterations. The necessary quantity of signals to be 

fused in this instance is denoted by J, which equals 7. The estimated local state vectors are (P
j
n) 

-1
 and x

j
 n, 

respectively, which are the inverses of the state error covariance matrices, for each of the seven respiratory 

signals. This suggests that the state vector can be extracted from respiratory signals more proficiently and 

effectively. By calculating breathing rates, only one fused signal of the seven respiratory signals, there is a 

global assessment of status for each sample. 

Estimating Breathing Rates:  

Finding peaks in the combined respiratory signal process. To calculate the number of peaks within a minute was 

counted for the beats per minute rate for the designated time period. 

4. RESULTS 

A unique method for estimating breathing rate from several physiological markers is provided in the paper. The 

results include a variety of signal processing techniques, such as the original Signals include things like High-

pass and moving average filters, ECG, PPG, and other wavelet transformations are examples of signals. 

The Mean Absolute Percentage Error (MAPE): 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
 |

𝑁

𝑖=1

 ˆµBR(i) −  µref(i)
  µref(i)

| ∗ 100, (%) 

where µˆ BR(i) and µref (i) represent the estimated BR and reference BR, respectively, and N is the number of 

windows over the entire database.  

   

 

 Fig4.Original ECG Signal     Fig5.Original PPG Signal 
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Fig6.Daubechies 4th Detailed ECG and PPG Signal Fig 7.Daubechies 8th Detailed ECG and PPG 

Signal 

 
Fig 8.Symlet 4th Detailed ECG and PPG Signal  Fig 9.Symlet 8th Detailed ECG and PPG  

Signal 

Furthermore, the PPG and ECG signals' study contrasts reference BPM (breaths per minute) and Mean Absolute 

Percentage Error (MAPE) at different Signal-to-Noise Ratios (SNR), including 10 dB, 0 dB, and 40 dB. These 

results most likely demonstrate the robustness of the proposed methodology for assessing breathing rate in 

various settings. 
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  Fig10: Reference BPM Vs MAPE of ECG with SNR 10dB 

 

  Fig11: Reference BPM Vs MAPE of ECG with SNR 0 dB 
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  Fig12: Reference BPM Vs MAPE of ECG with SNR 40dB 

 

  Fig13: Reference BPM Vs MAPE of PPG with SNR 0dB 
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  Fig14: Reference BPM Vs MAPE of PPG with SNR 10dB 

 

  Fig15: Reference BPM Vs MAPE of PPG with SNR 40dB 

According to the implementation, the Robust Kalman Filter outperforms the Extended Kalman Filter in terms of 

performance and noise levels. According to the results, the RKF has a smaller MAPE (Mean Absolute 

Percentage Error) than the EKF. In addition to producing better results, the RKF also outperformed the EKF in 

settings with very low SNR, where it is less useful. In comparison to the old EKF, the RKF implementation 

increased the signal extraction to deeper depths and to higher extents, leading to better estimation rates. 

MAPE Values Comparison 

ECG Signal 
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Algorithm <12 BPM 12 – 16 BPM 

SNR = 0 dB SNR = 10 

dB 

SNR = 40 dB SNR = 0 

dB 

SNR = 10 

dB 

SNR = 20 

dB 

CEEMDAN 10.33 9.4 8.23 9.6 7.72 12.7 

DWT 9.28 8.83 8.74 8.33 7.84 10.9 

EKF 9.35 7.7 6.79 7.69 6.69 13.8 

UKF 6.69 5.65 6.48 7.42 6.69 5.61 

Proposed 7.69 6.61 13.48 4.9 3.92 1.18 

 

PPG and BP Signals 

Algorithm <12 BPM 12 – 16 BPM 

SNR = 0 dB SNR = 10 dB SNR = 40 

dB 

SNR = 0 dB SNR = 10 

dB 

SNR = 20 dB 

CEEMDAN 10.2 10.3 10 9.4 9.7 10.42 

DWT 9.17 11.23 7.94 8.32 7.34 10.43 

EKF 10.35 8.7 7.79 7.9 7.04 13.2 

UKF 7.69 6.65 8.48 7.22 6.34 5.46 

Proposed 7.62 6.61 6.48 6.9 3.92 1.18 

 

Table1: MAPE Performance of ECG and PPG Signals 

5.  Discussions  

In this work, a mechanism for estimating BR was created using information from the BP, ECG, or PPG. The 

framework's effectiveness was examined and contrasted with that of previously disclosed methodologies on two 

publicly accessible datasets. The results demonstrate that even in the presence of, our proposed framework 

demonstrates excellent accuracy and durability. noise thanks to the inclusion of the Robust Kalman Filter 

(RKF). Our method extracts respiratory signals using both DWT and EMD approaches and to take use of each 

method's advantages. To increase the influence of a superior output estimate, add this functionality to our 

framework, which yields a single output with excellent precision. while also taking into account the state vector 

fusion approach. 
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