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Abstract:-This study presents a novel approach for denoising electrocardiogram (ECG) signals, aimed at
improving their performance and availability under noisy conditions.The suggested method harnesses
Conditional Generative Adversarial Networks (CGANS) tailored for the purpose of denoising Electrocardiogram
(ECG) data. This approach comprises two essential elements: an improved Convolutional Auto-Encoder (CAE)-
driven generator and a discriminator with four convolutional layers and a fully connected layer. It takes
advantage of the ECG signal's innate ability to retain spatial proximity and neighboring patterns in more
advanced feature representations, aided by skip connections that aid gradient propagation during the denoising
training process, the resulting model exhibits strong performance and generalization capabilities. This method
incorporates advanced filtering techniques, including IIR notch filters, The combination of I, and I; trend
filtering along with a Kalman filter has been employed to enhance the quality of an ECG signal, rendering it
more amenable for subsequent analysis and identification. These filtering methods prove particularly
advantageous when dealing with ECG signals exhibiting a high Signal-to-Noise Ratio (SNR). Extensive
experimentation conducted using the MIT-BIH database has validated the efficacy of these filtering techniques
in effectively eliminating various sources of noise, while preserving the unique characteristics of the ECG
signals.

Keywords: CGAN (conditional generative adversarial network), IIR Notch filter, 12 and I1 trend filtering, MIT-
BIH database.

1. Introduction

The electrocardiogram (ECG) is a vital tool for identifying, diagnosing, and categorizing cardiac disorders. The
rise of telemedicine has underscored the growing significance of remote ECG monitoring for automated heart
condition diagnosis. However, ECG signals are often plagued by a range of interferences and disruptions, such
as baseline wander and electrode motion, which must be eliminated to ensure precise diagnostic assessments.
Several traditional approaches are available for enhancing the quality of ECG signals, including adaptive
filtering, empirical mode decomposition (EMD), S-transform, wavelet transform, and Fourier
decomposition.Recently, wavelet transform (WT) has gained popularity for effectively denoising non-stationary
data like ECG and EEG.

In various signal processing applications, such as biomedical signal processing and audio processing, baseline
wander noise is mitigated through the use of techniques like Infinite Impulse Response (1IR) notch filters, 12 and
I1 trend filtering, and low-pass filters. Baseline wander noise is primarily composed of low-frequency
components that can obscure signal interpretation. yet, Separating ECG signals from noise becomes complex
when their spectral or energy distributions overlap. In addition to addressing electromagnetic (EM) and baseline
wander (BW) noises in ECG signals, more advanced techniques like the stacking contractive denoising auto
encoder (CDAE) and its upgraded version, denoising auto-encoder (DAE), have been employed. These methods
differ from traditional denoising techniques. Utilizing generative adversarial networks (GANs) for ECG
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denoising presents a departure from the Denoising Auto-encoder (DAE) method. GANs have demonstrated their
efficiency in eliminating individual noise sources and, notably, when combined with residual networks, they
have yielded denoised ECG signals with the highest Signal-to-Noise Ratio (SNR) in 2021, However, it has
been observed that this strategy may not perform well at low SNR levels. Conditional generative adversarial
networks (CGANSs) have not been explored for ECG denoising in the GAN-based approaches mentioned.
CGAN offers a way to condition data generation, making it suitable for situations where additional information
is necessary to guide the denoising process. Conditional Generative Adversarial Networks (CGANSs) have made
significant advancements within the realm of image processing, finding application in tasks Style transfer,
super-resolution, and image inpainting are a few examples. In your methodology, you employ CGAN for the
purpose of ECG denoising, Creating a model that incorporates a one-dimensional Convolutional Neural
Network (CNN) in tandem with Conditional Generative Adversarial Networks (CGAN).. Additionally, you
incorporate the convolutional auto-encoder (CAE) into your strategy.
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Figure 1 Depicts the typical architecture of the CAE-CGAN designed for ECG denoising.

We suggest a new CGAN built on CAE based on the analyses mentioned above.The CAE-CGAN, a framework
built upon Generative Adversarial Networks (GANS),It comprises of a generator as well as a discriminator.
Within this framework, the generator, designed with an optimized Convolutional Auto-Encoder (CAE),
Produces the cleaned ECG signals. Additionally, the generator uses the discriminator as an auxiliary network to
produce denoised ECG signals. Upon the completion of training, a proficiently trained generator can be used to
eliminate noise from the ECG data that is polluted with noise.The CGAN framework is generated using the
CAE structure. By adjusting the parameters and creating the structure, the optimum CAE structure is created.

1.1 L,and L, trend filtering:

Lotrend filtering, alternatively referred to as quadratic variation (QV) regularization, employs a linear time-
invariant (LTI) filter. It is valuable for smoothing noisy data and detrending time-series signals. This method is
effective for achieving smooth trend estimates in data.Ltrend filtering is commonly recognized as total
variation (TV) regularization It is a nonlinear filtering technique that aims to provide sparse derivative trend
estimates. This makes it suitable for estimating signals with sparse derivatives, such as piecewise-polynomial
signals.

The Kalman Filter is recognized as a fundamental and extensively applied estimation algorithm, serving a
crucial role in deriving estimations for concealed variables from measurements that frequently contain errors
and uncertainties. Furthermore, the Kalman Filter has the capability to predict future system states based on
previous estimations. It is particularly useful in systems with multiple sensors that rely on a sequence of
measurements to estimate hidden (unknown) states. To grasp the functioning of the Kalman Filter, it is
advisable to establish a fundamental grasp of essential terms, This list encompasses terms like variance, standard
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deviation, normal distribution, estimation, accuracy, precision, mean, expected outcome, and stochastic
variables. The text introduces a consolidated framework that relies on to perform I, and I, trend filtering, the
Kalman filter (KF) and the Kalman smoother (KS) are employed.This framework is presented as a basis for
comprehending the fundamental principles behind these noise reduction methods, as well as for illuminating the
distinctions and commonalities between them. The text also asserts that I, trend filtering can be considered a
subset of I, trend filtering. While I, and |, trend filtering methods are typically used in a non-causal manner in
the existing literature, the text suggests that it is feasible to construct these trend filters causally using the
provided framework. You can employ the Kalman Smoother (KS) to implement classical Trend filters that are
not causative. They can be converted into a causal filter design approach using the Kalman Filter (KF).

L& Ly Denoised
Noisy signal [ Filtering [ signal

The Electrocardiogram (ECG) is an indispensable instrument for evaluating cardiac performance and identifying
various heart-related illnesses.However, the accuracy of ECG signals can be compromised by various
disturbances. In response to this challenge, our research focused on the development of noise-reduction filters
for real ECG signals. We employed the Kalman filter technique to create two denoising filters, namely L2 and
L1.To assess the performance of these filters and their effectiveness in noise reduction,The outcomes of our
simulations strongly indicate that the Kalman filter is a highly effective tool for denoising ECG signals. It
consistently demonstrated excellent performance based on the analysis of these performance parameters.

1.2 1IR Notch Filter:

To remove baseline wander, we aim to design a notch filter that targets the specific frequency range associated
with this noise. Baseline wander noise typically consists of low-frequency components that can interfere with
the analysis of signals. It relies on the principle of selectively attenuating a narrow band of frequencies, which
corresponds to the unwanted baseline wander component in a signal. It refers to low-frequency variations in a
signal, often caused by factors like electrode movement, respiration, or external interference. The notch filter is
designed to have a sharp attenuation at the center frequency corresponding to the baseline wander component.
It's characterized by its center frequency (the frequency you want to attenuate) and bandwidth (the range of
frequencies around the center frequency to be attenuated).

; IR .
Noisy Denoised
signal | Noteh signal

filter

The filter's transfer function is typically described using second-order sections or biquad filter structures. The
result of applying the notch filter is a cleaner ECG signal with a notable reduction in baseline wander noise. The
effectiveness of the notch filter is assessed by contrasting the filtered signal with the original ECG signal.

2. Literature Review

[1] Xiong, Peng, Hongrui Wang, Ming Liu, Feng Lin, Zengguang Hou and Xiuling Liu: In this paper, a new
approach called contractive denoising auto encoder (CDAE) is described in order to reduce noise from a specific
signal, This approach creates a deep neural network for noise reduction, enhancing ECG signal representations
through a multilevel feature extraction process utilizing the Frobenius norm of the Jacobian matrix. The method
leverages the MIT-BIH database and offers a distinctive strategy that leads to improved signal-to-noise ratios
and reduced root mean square error.
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Summary: The denoising technology is being refined further.

[2] Kabir, Md. Ashfanoor and Celia Shahnaz: In this context, we introduce EMD-based ECG denoising, which
deviates from conventional methods. In this case, they employed the EMD domain to remove noise from IMFs,
allowing them to save the QRS complex signal. This method doesn't consider the number of Intrinsic Mode
Functions (IMFs) that encompass QRS complexes or the noise linked to them. Instead, it transforms the signal
into theDiscrete Wavelet Transform (DWT) domain, which facilitates the creation of a cleanECG reading. They
compared fourdatarecord simulations; as a result, the noise is decreased even more, and there is a strong
possibility of producing a more accurate denoised signal.

Summary: A new approach to ECG denoising has been developed.

[3] K X. Lu, M. Pan, Y. Yu: Cardiovascular disease stands as the leading global cause of mortality. For a quick
and precise diagnosis, the automatic electrocardiogram (ECG) analysis technique, whose first step is QRS
recognition, is essential. Fast computation and low memory requirements are hallmarks of the QRS complex
detection threshold technique. In this mobile age, wireless, wearable, and portable ECG systems may quickly
alter threshold algorithms. However, there is still room for improvement in the threshold algorithm's detection
rate. An improved adaptive threshold approach for QRS detection is described in this study. The key elements of
this technique include preprocessing, peak discovery, and adaptive threshold QRS detection. The MIT-BIH has
a 99.41% detection rate, a 99.72% sensitivity, and a 99.69% specificity.

Summary: used statistical thresholds to analyze the QRS peaks detection and detected the QRS peaks from an
ECG signal

[4] R.M. Rangayyan, John Wiley & sons: Complex phenomena known as physiological processes might include
stimulation and control of the nervous system or of hormones, inputs and outputs that can be in the form of
chemicals, neurotransmitters, or information, and mechanical, electrical, or biochemical actions. The majority of
physiological processes either exhibit themselves as signals or are accompanied by signals that describe their
type and activities. The signals could be electrical, such as potential or current, physical, such as pressure or
temperature, or biological, such hormones and neurotransmitters.

Summary: studied the physiological procedures involved in identifying the QRS peak from an ECG signal and
identified them.

[5] J. Pan, W.J. Tompkins: We have devised a real-time approach for accurately recognizing QRS complexes in
ECG signals. This method relies on precise digital analyses of parameters like slope, amplitude, and breadth to
differentiate QRS complexes. To enhance its effectiveness, we've implemented a regulated digital bandpass
filter that effectively mitigates various types of interference commonly found in ECG data. By employing low
thresholds, made possible by this filtering process, we have significantly amplified the system's detection
sensitivity. What sets our system apart is its ability to adapt by periodically fine-tuning thresholds and
parameters to accommodate variations in heart rate and changes in the shape of the QRS complex. Through the
utilization of this method, we have accomplished an impressive 99.3% accuracy in the precise identification of
QRS complexes within the MIT/BIH Arrhythmia database.

Summary: we have analyzed and extracted QRS peaks from ECG signals within the MIT/BIH and Arrhythmia
databases.

3. Work Description

To extract the ECG signals with no noise, we employed CAE-CGAN and other filters. The adversarial learning
process employs a minmax game between two entities, Referred to as G and D, the optimization of the objective
function, as outlined below, is pursued in this context.

ming maxp = Ex~pdata(x)[10gD(X)] +log(1 — D(G(2))] Ez-pz(z) 1)
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Following the introduction of GAN, numerous enhanced versions The GAN may improved by adding extra
conditions to make it a conditional version. Information y, which may be anything extra like a class data or
labels from different distributions. The purposeful action of "CGAN" is:

Ming Maxp = Ex-pdatarx) [109D(X, )] +[10g(1 — D(G(z, y), Y] Ez-pzr) 2

In the context of a denoising task , where the input is a noisy signal denoted as X , the values of the discriminator
D and the generator G are determined using the Least Squares Generative Adversarial Network (LSGAN)
method. LSGAN addresses issues like gradient vanishing by replacing the standard cross-entropy loss with the
least square loss.The objective functions for both the discriminator (D) and the generator (G) in LSGAN are as
follows:

ming Vissan (D) = 5 Excpiaagy [(DCS ¥) = 1] + 5Eo-pu) [(D(G(2, ), Y))] )

ming Viscan (6)= 5 Ez-pun [(D(G(z ¥), y) ~ 1)] @

The LSGAN objective function removes the variable z from the equation while introducing the distance metric
lgist and the maximum local difference I...x. The Idist function computes the variations between the raw signal x
and the denoised signal. The smaller the lgg, the higher the denoised quality. I keeps track of the greatest
difference between the Signals that have been denoised and those that have not. The greater the .y, the greater
the number of details. The more the ECG signal is retained, the better the medical benefit.

In this context,N denotes the quantitysampled data, where X, signifiesthe n-th sample of a denoised signal, while
X, stands for the n-th sample of a raw signal. The following is a definition of the loss function for G:

Ming V(G) =E ~pnoisy (¥) [(D(G(%), %)) — 1)7] +A1lgisr AolmaxAx (5)

The term "pnoisy(x)" represents the distribution of noisy data in the loss function. To influence the trade-off
between different components of the loss function, two weight coefficients, namely A; and 2,, are employed.
Through experimentation, these coefficients have been set to 0.7 and 0.2, respectively. A, and A, allow for the
adjustment of the relative importance of the terms Idist and Imax within the objective function.

Furthermore, the loss function for the discriminator has been adjusted to facilitate its learning process . It now
assesses (x, x) as "true" and (x, G(x)) as "false." This modification is integral to the adversarial learning
framework and supports the generator's goal of producing more accurate denoised signals.

min p V (D) = [(D(X, (%) = 1)’]Ex-paataco + [(D(G((F), (%)*IEx-patain (6)

As performance measures, The root mean square error (RMSE) and signal-to-noise ratio (SNR) are employed as
evaluation metrics, and their formulas are provided as follows:

1 N
RMSE=\/NZn:1(@—xn)2 @)

N 2

SNR = 101 _ 4m=1%n
T BT (& — %)

(8

In the context of denoising algorithms, the evaluation parameters primarily focus on "x,"This expression
signifies the unprocessed (raw) signal, and "X," which represents the denoised signal. These parameters play a
central role in assessing the effectiveness of denoising methods. Typically, The impact of the denoising process

is evaluated using essential metrics like Signal-to-Noise Ratio (SNR) and RMSE (Root Mean Square Error).

For conducting experiments and obtaining samples, the raw data used was sourced from the datarecord.
Thisdatarecord contains 30-minute recordings sampled at a frequency of 360 hertz.

In this context, "x" symbolizes the unaltered (raw) signal, and x represents the denoised signal. These are the
primary evaluation parameters for denoising algorithms. The denoising effectiveness is directly proportional to
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the SNR, and inversely proportional to the RMSE; in other words, higher SNR and lower RMSE indicate better

denoising results.

Denoising Results

Figured [=
s o x Fe Gdt View nien Took Dedtop Window Welp
TR T TR I - Dads AR 09EL£-A0E(eD
Original ECG Signal . Baseline Wander and Noise ECG Signal
LI 1
0 5
| N
=i 1| [ ‘
4 M 100
W WA WL W \" 1
100 o
- \
400 ! L
T s e T 0w |
,/J‘« v N \
P i %
300
0 2 3 4 5 8 7 8 9 w0

Fig2(a) ECG Signal

Figure 2(b) Noisy Signal

Fig 2: Denoising eliminates the BW Noise

Tocls  Desiop Help
LUBDELA-|2 DE|=D

Baseline Estimation of ECG Signal

Window

=

Figure 2(c) Denoised Signal

< Figure 7

File Edit View Inset Tools Desktop Window Help
D@ k(AL 0DEsA- @08 o
Original ECG Signal

300
w00
250
B 50
200
150 -
100 o
=0 -100 V]
o ; P" A
50 « \,—“ 'dl
-50 \\
200
100
260
150
o 1 2 El 4 5 6 7 a 9 0 o z 3 s L L] L] ©

- =] x
~ ] Figure:
Fle Gt View It Took i ielp
DOdS | h (R0 DRL-
: Ehmmnmmhn ECQSIw .

n
jew Insert Tools Deskiop Window el

'PRA- R 0E =1

Fig3(a) ECG Signal

Fig 3(b) Noisy Signal

Fig 3: Denoising eliminates the EM noise

.
SEFTINES

Foed Took Desiton Wiedow My
AUBE L3

08 =@

elecirode Estimation of ECG Signal

- xf
1

G Syl

¥

3204



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol.44 No. 4 (2023)

Fig 3(c) Denoised Signal

Figures 2 and 3 illustrateThe figures display the outcomes of noise reduction for baseline wander (BW) and
electrode motion (EM) artifacts achieved with our proposed method. In these visual representations, The sub
figures are arranged in a top-to-bottom sequence.illustrating the original signals, the noisy signals, and the
denoised signals.

It is evident from the figures that the denoised signals, obtained through our proposed method, closely resemble
the raw signals. This observation underscores the remarkable effectiveness of our method in efficiently
removing two distinct noise types: baseline wander (BW) and electrode motion (EM). The denoised signals
closely approximate the original, uncorrupted signals, underscoring the success of our denoising approach.

Denoisingoutcomesforafreshrecorddataseton average

Noise Type BW EM

Denoised |SNR |RMSE |SNR RMSE
metrics

100 39.39 [0.0040 [25.07 (0.0027
106 33.45 10.0074 [24.03 |0.0050
107 20.28 [0.0068 [32.76 (0.0026
112 23.57 [0.0056 [32.68 |0.0054
117 30.31 [0.0072 [22.32 (0.0035
121 34.53 |0.0049 [21.81 |0.0031
123 28.27 [0.0054 [23.22 (0.0067
124 30.06 [0.0089 [24.54 (0.0033
210 31.72 |0.0077 [27.93 |0.0092
220 29.34 |0.0065 [27.15 (0.0078
IAvg 30.99 [0.0064 [26.22 |0.0070

Table 1 Denoising outcomes for a fresh record data set on average
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Figure 4: Smoothing of ECG signals for record 100m from the MIT-BIH Arrhythmia

output of L2 trend filtering
06 ﬂ
04

\vn“

hd "”

4 . . . A
0 200 400 600 800 1000 1200 1400 1600 1800 2000
time in ms

o
>

‘\ h
WW qw

\
j W
W

D
\u

frequency in HZ
= =)
>

&
=

S

=
o

Fig 4(c) ECG Signal Reconstruction with 12 Trend Filtering.

ECG Signal with baswlme wander

i

0 500 1000 1500 2000 2500 3000 3500 4000
Sample Number
ECG Blgnal W|th Basellne Wander Nolse

I I
0 1000 1500 2000 2500 3000 3500 4000
Sample Number

Figure 5: IR Notch Filter

o
o

Amplitude{mv)
=Y

0.

o

Amplitude{mv)
=Y

<.

en

Utilizing an 1IR Notch Filter to Remove Baseline Wander Noise from Record 100 of the MIT-BIH Arrhythmia
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S.no Data Sets | SNR

1 100 21.85
2 105 18.52
3 112 26.67
4 121 19.98
5 210 23.60
Avg 22.124

Table 2 :MIT-BIH Arrhythmia Data Base

4, Results and Discussion
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The denoising procedure successfully eliminates two noise sources: baseline wander (BW) and electrode motion
(EM). Figures 2 and 3 illustrate the results of reducing BW and EM noises through our technology. In these
figures, subfigures sequentially display original signals, noisy signals, and denoised signals arranged in a top-to-
bottom order.Notably, the denoised signals closely resemble the raw signals, highlighting the efficiency of our
method in reducing these two specific source of noise;: BW and EM. In Table 1, you will find the Signal-to-
Noise Ratio (SNR) and Root Mean Square Error (RMSE) values after reducing noise in 10 records with both
baseline wander (BW) and electrode motion (EM) noise. The results offer compelling evidence that our method
outperforms others in Signal-to-Noise Ratio (SNR) and Root Mean Square Error (RMSE) across various types
of noise.The average SNRs for BW are consistently above 30 dB, while the average SNRs for EM are greater
than 26 dB. Our proposed method, which combines I2 and I1 trend filtering with an Infinite Impulse Response
(IIR) Notch filter, has successfully eliminated or reduced BW noise, resulting in a clean ECG signal.

For ECG signal smoothing,We applied both L2 and L1 trend filtering techniques to the MIT-BIH Arrhythmia
Database. As an example, we have taken a specific case record, such as 100m. The application of L2 and L1
trend filtering for ECG smoothing is demonstrated in the panels. Both L2 and L1 trend filtering algorithms are
employed. It is worth noting that L2 trend filtering may cause distortion in the QRS complex; however, This
problem can be resolved by fine-tuning the regularization value, Particularly by raising the cutoff frequency.In
this case, the structure of QRS complexes is preserved while low-frequency noise is effectively eliminated.

In the 1IR notch filter, we employ the direct form-11, as depicted in Figure 5. This involves initially receiving the
low-frequency ECG signal, applying the notch filter, and increasing the frequency within the BW noise.
Combining this filter with other filters results in more effective denoising and the acquisition of a more accurate
ECG signal.

5. Conclusion

The CGAN approach removes unnecessary noise in the signal by utilizing a low pass filter as well as
concatenating simplified filters such as the L, and L, trend filtering and the IIR Notch filter. The proposed
approach works well at high signal-to-noise ratios (SNR). Baseline wander (BW) and other disruptions were
effectively removed or reduced, resulting in a clear ECG signal. Combining this with additional filters will
enhance denoising and yield a more precise signal.
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