
Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol.44 No. 4 (2023) 

__________________________________________________________________________________ 

3199 

An ECG Signal Denoising Method Using 

Filtering Techniques 

S. Bindu Bhargavi 
1
, Dr.B. Trimula Krishna

2
 

Student, Dept. of ECE, University College of Engineering Kakinada, JNTUK Kakinada, India. 

Professor, Dept. of ECE, University College of Engineering Kakinada, JNTUK Kakinada, India. 

 

Abstract:-This study presents a novel approach for denoising electrocardiogram (ECG) signals, aimed at 

improving their performance and availability under noisy conditions.The suggested method harnesses 

Conditional Generative Adversarial Networks (CGANs) tailored for the purpose of denoising Electrocardiogram 

(ECG) data. This approach comprises two essential elements: an improved Convolutional Auto-Encoder (CAE)-

driven generator and a discriminator with four convolutional layers and a fully connected layer. It takes 

advantage of the ECG signal's innate ability to retain spatial proximity and neighboring patterns in more 

advanced feature representations, aided by skip connections that aid gradient propagation during the denoising 

training process, the resulting model exhibits strong performance and generalization capabilities. This method 

incorporates advanced filtering techniques, including IIR notch filters, The combination of l2 and l1 trend 

filtering along with a Kalman filter has been employed to enhance the quality of an ECG signal, rendering it 

more amenable for subsequent analysis and identification. These filtering methods prove particularly 

advantageous when dealing with ECG signals exhibiting a high Signal-to-Noise Ratio (SNR). Extensive 

experimentation conducted using the MIT-BIH database has validated the efficacy of these filtering techniques 

in effectively eliminating various sources of noise, while preserving the unique characteristics of the ECG 

signals. 

Keywords: CGAN (conditional generative adversarial network), IIR Notch filter, l2 and l1 trend filtering, MIT-

BIH database. 

 

1. Introduction 

The electrocardiogram (ECG) is a vital tool for identifying, diagnosing, and categorizing cardiac disorders. The 

rise of telemedicine has underscored the growing significance of remote ECG monitoring for automated heart 

condition diagnosis. However, ECG signals are often plagued by a range of interferences and disruptions, such 

as baseline wander and electrode motion, which must be eliminated to ensure precise diagnostic assessments. 

Several traditional approaches are available for enhancing the quality of ECG signals, including adaptive 

filtering, empirical mode decomposition (EMD), S-transform, wavelet transform, and Fourier 

decomposition.Recently, wavelet transform (WT) has gained popularity for effectively denoising non-stationary 

data like ECG and EEG.  

In various signal processing applications, such as biomedical signal processing and audio processing, baseline 

wander noise is mitigated through the use of techniques like Infinite Impulse Response (IIR) notch filters, l2 and 

l1 trend filtering, and low-pass filters. Baseline wander noise is primarily composed of low-frequency 

components that can obscure signal interpretation. yet, Separating ECG signals from noise becomes complex 

when their spectral or energy distributions overlap. In addition to addressing electromagnetic (EM) and baseline 

wander (BW) noises in ECG signals, more advanced techniques like the stacking contractive denoising auto 

encoder (CDAE) and its upgraded version, denoising auto-encoder (DAE), have been employed. These methods 

differ from traditional denoising techniques. Utilizing generative adversarial networks (GANs) for ECG 
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denoising presents a departure from the Denoising Auto-encoder (DAE) method. GANs have demonstrated their 

efficiency in eliminating individual noise sources and, notably, when combined with residual networks, they 

have yielded denoised ECG signals with the highest Signal-to-Noise Ratio (SNR)  in 2021, However, it has 

been observed that this strategy may not perform well at low SNR levels. Conditional generative adversarial 

networks (CGANs) have not been explored for ECG denoising in the GAN-based approaches mentioned. 

CGAN offers a way to condition data generation, making it suitable for situations where additional information 

is necessary to guide the denoising process. Conditional Generative Adversarial Networks (CGANs) have made 

significant advancements within the realm of image processing, finding application in tasks Style transfer, 

super-resolution, and image inpainting are a few examples. In your methodology, you employ CGAN for the 

purpose of ECG denoising, Creating a model that incorporates a one-dimensional Convolutional Neural 

Network (CNN) in tandem with Conditional Generative Adversarial Networks (CGAN).. Additionally, you 

incorporate the convolutional auto-encoder (CAE) into your strategy. 

 

 

Figure 1 Depicts the typical architecture of the CAE-CGAN designed for ECG denoising. 

We suggest a new CGAN built on CAE based on the analyses mentioned above.The CAE-CGAN, a framework 

built upon Generative Adversarial Networks (GANs),It comprises of a generator as well as a discriminator. 

Within this framework, the generator, designed with an optimized Convolutional Auto-Encoder (CAE), 

Produces the cleaned ECG signals. Additionally, the generator uses the discriminator as an auxiliary network to 

produce denoised ECG signals. Upon the completion of training, a proficiently trained generator can be used to 

eliminate noise from the ECG data that is polluted with noise.The CGAN framework is generated using the 

CAE structure. By adjusting the parameters and creating the structure, the optimum CAE structure is created. 

1.1  L2 and L1 trend filtering:  

L2trend filtering, alternatively referred to as quadratic variation (QV) regularization, employs a linear time-

invariant (LTI) filter. It is valuable for smoothing noisy data and detrending time-series signals. This method is 

effective for achieving smooth trend estimates in data.L1trend filtering is commonly recognized as total 

variation (TV) regularization. It is a nonlinear filtering technique that aims to provide sparse derivative trend 

estimates. This makes it suitable for estimating signals with sparse derivatives, such as piecewise-polynomial 

signals.  

The Kalman Filter is recognized as a fundamental and extensively applied estimation algorithm, serving a 

crucial role in deriving estimations for concealed variables from measurements that frequently contain errors 

and uncertainties. Furthermore, the Kalman Filter has the capability to predict future system states based on 

previous estimations. It is particularly useful in systems with multiple sensors that rely on a sequence of 

measurements to estimate hidden (unknown) states. To grasp the functioning of the Kalman Filter, it is 

advisable to establish a fundamental grasp of essential terms,This list encompasses terms like variance, standard 
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deviation, normal distribution, estimation, accuracy, precision, mean, expected outcome, and stochastic 

variables. The text introduces a consolidated framework that relies on to perform l2 and l1 trend filtering, the 

Kalman filter (KF) and the Kalman smoother (KS) are employed.This framework is presented as a basis for 

comprehending the fundamental principles behind these noise reduction methods, as well as for illuminating the 

distinctions and commonalities between them. The text also asserts that l2 trend filtering can be considered a 

subset of l1 trend filtering. While  l2  and  l1  trend filtering methods are typically used in a non-causal manner in 

the existing literature, the text suggests that it is feasible to construct these trend filters causally using the 

provided framework. You can employ the Kalman Smoother (KS) to implement classical Trend filters that are 

not causative. They can be converted into a causal filter design approach using the Kalman Filter (KF). 

 

 

    

 

The Electrocardiogram (ECG) is an indispensable instrument for evaluating cardiac performance and identifying 

various heart-related illnesses.However, the accuracy of ECG signals can be compromised by various 

disturbances. In response to this challenge, our research focused on the development of noise-reduction filters 

for real ECG signals. We employed the Kalman filter technique to create two denoising filters, namely L2 and 

L1.To assess the performance of these filters and their effectiveness in noise reduction,The outcomes of our 

simulations strongly indicate that the Kalman filter is a highly effective tool for denoising ECG signals. It 

consistently demonstrated excellent performance based on the analysis of these performance parameters.  

1.2   IIR Notch Filter: 

To remove baseline wander, we aim to design a notch filter that targets the specific frequency range associated 

with this noise. Baseline wander noise typically consists of low-frequency components that can interfere with 

the analysis of signals. It relies on the principle of selectively attenuating a narrow band of frequencies, which 

corresponds to the unwanted baseline wander component in a signal. It refers to low-frequency variations in a 

signal, often caused by factors like electrode movement, respiration, or external interference. The notch filter is 

designed to have a sharp attenuation at the center frequency corresponding to the baseline wander component. 

It's characterized by its center frequency (the frequency you want to attenuate) and bandwidth (the range of 

frequencies around the center frequency to be attenuated). 

 

  

  

 

The filter's transfer function is typically described using second-order sections or biquad filter structures. The 

result of applying the notch filter is a cleaner ECG signal with a notable reduction in baseline wander noise. The 

effectiveness of the notch filter is assessed by contrasting the filtered signal with the original ECG signal.  

2. Literature Review 

[1] Xiong, Peng, Hongrui Wang, Ming Liu, Feng Lin, Zengguang Hou and Xiuling Liu: In this paper, a new 

approach called contractive denoising auto encoder (CDAE) is described in order to reduce noise from a specific 

signal, This approach creates a deep neural network for noise reduction, enhancing ECG signal representations 

through a multilevel feature extraction process utilizing the Frobenius norm of the Jacobian matrix. The method 

leverages the MIT-BIH database and offers a distinctive strategy that leads to improved signal-to-noise ratios 

and reduced root mean square error. 
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Summary: The denoising technology is being refined further. 

[2] Kabir, Md. Ashfanoor and Celia Shahnaz: In this context, we introduce EMD-based ECG denoising, which 

deviates from conventional methods. In this case, they employed the EMD domain to remove noise from IMFs, 

allowing them to save the QRS complex signal. This method doesn't consider the number of Intrinsic Mode 

Functions (IMFs) that encompass QRS complexes or the noise linked to them. Instead, it transforms the signal 

into theDiscrete Wavelet Transform (DWT) domain, which facilitates the creation of a cleanECG reading. They 

compared fourdatarecord simulations; as a result, the noise is decreased even more, and there is a strong 

possibility of producing a more accurate denoised signal. 

Summary: A new approach to ECG denoising has been developed.  

[3] K X. Lu, M. Pan, Y. Yu: Cardiovascular disease stands as the leading global cause of mortality. For a quick 

and precise diagnosis, the automatic electrocardiogram (ECG) analysis technique, whose first step is QRS 

recognition, is essential. Fast computation and low memory requirements are hallmarks of the QRS complex 

detection threshold technique. In this mobile age, wireless, wearable, and portable ECG systems may quickly 

alter threshold algorithms. However, there is still room for improvement in the threshold algorithm's detection 

rate. An improved adaptive threshold approach for QRS detection is described in this study. The key elements of 

this technique include preprocessing, peak discovery, and adaptive threshold QRS detection. The MIT-BIH has 

a 99.41% detection rate, a 99.72% sensitivity, and a 99.69% specificity. 

Summary: used statistical thresholds to analyze the QRS peaks detection and detected the QRS peaks from an 

ECG signal 

[4] R.M. Rangayyan, John Wiley & sons: Complex phenomena known as physiological processes might include 

stimulation and control of the nervous system or of hormones, inputs and outputs that can be in the form of 

chemicals, neurotransmitters, or information, and mechanical, electrical, or biochemical actions. The majority of 

physiological processes either exhibit themselves as signals or are accompanied by signals that describe their 

type and activities. The signals could be electrical, such as potential or current, physical, such as pressure or 

temperature, or biological, such hormones and neurotransmitters. 

Summary: studied the physiological procedures involved in identifying the QRS peak from an ECG signal and 

identified them. 

[5] J. Pan, W.J. Tompkins: We have devised a real-time approach for accurately recognizing QRS complexes in 

ECG signals. This method relies on precise digital analyses of parameters like slope, amplitude, and breadth to 

differentiate QRS complexes. To enhance its effectiveness, we've implemented a regulated digital bandpass 

filter that effectively mitigates various types of interference commonly found in ECG data. By employing low 

thresholds, made possible by this filtering process, we have significantly amplified the system's detection 

sensitivity. What sets our system apart is its ability to adapt by periodically fine-tuning thresholds and 

parameters to accommodate variations in heart rate and changes in the shape of the QRS complex. Through the 

utilization of this method, we have accomplished an impressive 99.3% accuracy in the precise identification of 

QRS complexes within the MIT/BIH Arrhythmia database.  

Summary: we have analyzed and extracted QRS peaks from ECG signals within the MIT/BIH and Arrhythmia 

databases. 

3. Work Description 

To extract the ECG signals with no noise, we employed CAE-CGAN and other filters. The adversarial learning 

process employs a minmax game between two entities, Referred to as G and D, the optimization of the objective 

function, as outlined below, is pursued in this context. 

minG maxD = Ex~pdata(x)[logD(x)] +[log(1 − D(G(z))] Ez~pz(z)                                    (1) 
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Following the introduction of GAN, numerous enhanced versions The GAN may improved by adding extra 

conditions to make it a conditional version. Information y, which may be anything extra like a class data or 

labels from different distributions. The purposeful action of "CGAN" is: 

minG maxD = Ex~pdata(x) [logD(x, y)] +[log(1 − D(G(z, y), y))] Ez~pz(z)                                (2) 

In the context of a denoising task , where the input is a noisy signal denoted as x̃ , the values of the discriminator 

D and the generator G are determined using the Least Squares Generative Adversarial Network (LSGAN) 

method. LSGAN addresses issues like gradient vanishing by replacing the standard cross-entropy loss with the 

least square loss.The objective functions for both the discriminator (D) and the generator (G) in LSGAN are as 

follows: 

minD VLSGAN (D) =  
1

2
 Ex~pdata(x) [(D(x, y) − 1)

2
] + 

1

2
Ez~pz(z) [(D(G(z, y), y))

2
]                            (3) 

minG VLSGAN (G)= 
1

2
 Ez~pz(z) [(D(G(z, y), y) − 1)

2
]                                                                              (4) 

The LSGAN objective function removes the variable z from the equation while introducing the distance metric 

ldist and the maximum local difference lmax. The ldist function computes the variations between the raw signal x 

and the denoised signal. The smaller the ldist, the higher the denoised quality. lmax keeps track of the greatest 

difference between the Signals that have been denoised and those that have not. The greater the lmax, the greater 

the number of details. The more the ECG signal is retained, the better the medical benefit. 

In this context,N denotes the quantitysampled data, where xn signifiesthe n-th sample of a denoised signal, while 

xn stands for the n-th sample of a raw signal. The following is a definition of the loss function for G: 

minG V(G) =E x˜∼pnoisy (𝑥 ) [(D(G(𝑥 ), 𝑥 )) − 1)
2
] +𝜆1ldist+ λ2lmax𝜆x                                                     (5) 

The term "pnoisy(x̃)" represents the distribution of noisy data in the loss function. To influence the trade-off 

between different components of the loss function, two weight coefficients, namely λ1  and λ2, are employed. 

Through experimentation, these coefficients have been set to 0.7 and 0.2, respectively. λ1 and λ2 allow for the 

adjustment of the relative importance of the terms ldist and lmax within the objective function. 

Furthermore, the loss function for the discriminator has been adjusted to facilitate its learning process . It now 

assesses (x, x̃) as "true" and (x, G(x̃)) as "false." This modification is integral to the adversarial learning 

framework and supports the generator's goal of producing more accurate denoised signals. 

min D V (D) =  [(D(x, (𝑥 ) − 1)
2
]Ex~pdata(x) + [(D(G((𝑥 ), (𝑥 )

2
]Ex~pdata(x)                                                   (6) 

As performance measures, The root mean square error (RMSE) and signal-to-noise ratio (SNR) are employed as 

evaluation metrics, and their formulas are provided as follows: 

𝑅𝑀𝑆𝐸 =  
1

𝑁
  𝑥𝑛 − 𝑥𝑛 2

𝑁

𝑛=1
  (7) 

𝑆𝑁𝑅 = 10 log10

 𝑥𝑛
2𝑁

𝑛=1

  𝑥𝑛 − 𝑥𝑛 2𝑁
𝑛=1

 8  

In the context of denoising algorithms, the evaluation parameters primarily focus on "x,"This expression 

signifies the unprocessed (raw) signal, and "x̂," which represents the denoised signal. These parameters play a 

central role in assessing the effectiveness of denoising methods. Typically, The impact of the denoising process 

is evaluated using essential metrics like Signal-to-Noise Ratio (SNR) and RMSE (Root Mean Square Error). 

For conducting experiments and obtaining samples, the raw data used was sourced from the datarecord. 

Thisdatarecord contains 30-minute recordings sampled at a frequency of 360 hertz.  

In this context, "x" symbolizes the unaltered (raw) signal, and 𝑥  represents the denoised signal. These are the 

primary evaluation parameters for denoising algorithms. The denoising effectiveness is directly proportional to 
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the SNR, and inversely proportional to the RMSE; in other words, higher SNR and lower RMSE indicate better 

denoising results. 

 

Denoising Results 

 

      Fig2(a) ECG Signal                          Figure 2(b) Noisy Signal 

Fig 2:  Denoising eliminates the BW Noise 

 

                                                                  Figure 2(c) Denoised Signal   

 

Fig3(a) ECG Signal                                                                                    Fig 3(b) Noisy Signal 

Fig 3: Denoising eliminates the EM noise 
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Fig 3(c)  Denoised Signal 

Figures 2 and 3 illustrateThe figures display the outcomes of noise reduction for baseline wander (BW) and 

electrode motion (EM) artifacts achieved with our proposed method. In these visual representations,The sub 

figures are arranged in a top-to-bottom sequence.illustrating the original signals, the noisy signals, and the 

denoised signals. 

It is evident from the figures that the denoised signals, obtained through our proposed method, closely resemble 

the raw signals. This observation underscores the remarkable effectiveness of our method in efficiently 

removing two distinct noise types: baseline wander (BW) and electrode motion (EM). The denoised signals 

closely approximate the original, uncorrupted signals, underscoring the success of our denoising approach. 

Denoisingoutcomesforafreshrecorddataseton average 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 Denoising outcomes for a fresh record data set on average 

 

 

Fig4(a) Unaltered ECG Signal,Baseline Wander        Fig4(b) ECG Reconstruction Utilizing l1 and l2 Trend 

removal                           

Noise Type BW EM 

Denoised 

metrics 

SNR RMSE SNR RMSE 

100 39.39 0.0040 25.07 0.0027 

106 33.45 0.0074 24.03 0.0050 

107 29.28 0.0068 32.76 0.0026 

112 23.57 0.0056 32.68 0.0054 

117 30.31 0.0072 22.32 0.0035 

121 34.53 0.0049 21.81 0.0031 

123 28.27 0.0054 23.22 0.0067 

124 30.06 0.0089 24.54 0.0033 

210 31.72 0.0077 27.93 0.0092 

220 29.34 0.0065 27.15 0.0078 

Avg 30.99 0.0064 26.22 0.0070 
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Figure 4:  Smoothing of ECG signals for record 100m from the MIT-BIH Arrhythmia 

 

 

Fig 4(c) ECG Signal Reconstruction with l2 Trend Filtering. 

 

Figure 5: IIR Notch Filter 

Utilizing an IIR Notch Filter to Remove Baseline Wander Noise from Record 100 of the MIT-BIH Arrhythmia 

Database, with the Y-Axis Expressed in millivolts (mV). (a) Represents the ECG Signal, (b) Represents 

Baseline Wander Noise. 

S.no Data Sets SNR 

1 100 21.85 

2 105 18.52 

3 112 26.67 

4 121 19.98 

5 210 23.60 

Avg 22.124 

                                                       Table 2 :MIT-BIH Arrhythmia Data Base 

4. Results and Discussion 
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The denoising procedure successfully eliminates two noise sources: baseline wander (BW) and electrode motion 

(EM). Figures 2 and 3 illustrate the results of reducing BW and EM noises through our technology. In these 

figures, subfigures sequentially display original signals, noisy signals, and denoised signals arranged in a top-to-

bottom order.Notably, the denoised signals closely resemble the raw signals, highlighting the efficiency of our 

method in reducing these two specific source of noise: BW and EM. In Table 1, you will find the Signal-to-

Noise Ratio (SNR) and Root Mean Square Error (RMSE) values after reducing noise in 10 records with both 

baseline wander (BW) and electrode motion (EM) noise. The results offer compelling evidence that our method 

outperforms others in Signal-to-Noise Ratio (SNR) and Root Mean Square Error (RMSE) across various types 

of noise.The average SNRs for BW are consistently above 30 dB, while the average SNRs for EM are greater 

than 26 dB. Our proposed method, which combines l2 and l1 trend filtering with an Infinite Impulse Response 

(IIR) Notch filter, has successfully eliminated or reduced BW noise, resulting in a clean ECG signal. 

For ECG signal smoothing,We applied both L2 and L1 trend filtering techniques to the MIT-BIH Arrhythmia 

Database. As an example, we have taken a specific case record, such as 100m. The application of L2 and L1 

trend filtering for ECG smoothing is demonstrated in the panels. Both L2 and L1 trend filtering algorithms are 

employed. It is worth noting that L2 trend filtering may cause distortion in the QRS complex; however, This 

problem can be resolved by fine-tuning the regularization value, Particularly by raising the cutoff frequency.In 

this case, the structure of QRS complexes is preserved while low-frequency noise is effectively eliminated. 

In the IIR notch filter, we employ the direct form-II, as depicted in Figure 5. This involves initially receiving the 

low-frequency ECG signal, applying the notch filter, and increasing the frequency within the BW noise. 

Combining this filter with other filters results in more effective denoising and the acquisition of a more accurate 

ECG signal. 

5. Conclusion 

The CGAN approach removes unnecessary noise in the signal by utilizing a low pass filter as well as 

concatenating simplified filters such as the L2 and L1 trend filtering and the IIR Notch filter. The proposed 

approach works well at high signal-to-noise ratios (SNR). Baseline wander (BW) and other disruptions were 

effectively removed or reduced, resulting in a clear ECG signal. Combining this with additional filters will 

enhance denoising and yield a more precise signal. 
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