
Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055  
Vol. 44 No. 3 (2023)  
_________________________________________________________________________________ 
 

3147 
 

Optimal Sizing and Placement of Energy Storage 

Systems in Hybrid Energy Environment 
 

[1]Md Safdar Ali, [2]Abrar Ahmad, [3]Ibraheem, [4]Ward Ul Hijaz Paul, [5]Anwar Shahzad 

Siddiqui, [6]Sheeraz Kirmani 

 
[1] [2] [3] [4] [5] [6]Department of Electrical Engineering, Jamia Millia Islamia,  

New Delhi 

 
Abstract: The study suggests a method for setting up a photovoltaic (PV) system's hybrid energy storage 

system (HESS), which consists of batteries and supercapacitors, to have the best possible capacity. The 

objective is to reduce overall expenses, including investment and running costs, while minimizing variability 

in PV production and maximizing system performance. 

The optimization model has two layers. In order to reduce the overall PV-HESS system cost, the higher layer 

chooses the battery and supercapacitor capacity and power ratings. Using deep reinforcement learning, the 

lower layer optimizes the PV-HESS system's performance over the course of a year. 

The investment expenses for the battery and supercapacitor are taken into account in the top layer, together 

with the annual running costs determined by the bottom layer model. By regulating the HESS charging and 

discharging and lowering PV curtailment and fluctuation penalties, the lower layer seeks to reduce 

operational costs. Both layers' limitations and objective functions are presented. 

The lower layer operation optimization problem is proposed to be solved via the deep deterministic policy 

gradient (DDPG) algorithm. The inputs include the PV output, load demand, electricity price, and the HESS 

state of charge. The control actions are the battery/supercapacitor power outputs. 

In Shandong, China, a 1 MW PV system is being researched. The ideal HESS capacity arrangement, 

according to the results, reduces the overall cost as compared to no storage by 7.7%. To smooth out variations 

and move PV generation to times of high prices, the HESS works in concert with the battery and 

supercapacitor. It is demonstrated that the DDPG algorithm efficiently optimizes system performance. 

 In order to configure battery and supercapacitor capacities for a PV-HESS system while taking operating 

and investment costs into account, the study presents an optimisation technique. PV variability is managed 

by a reinforcement learning algorithm and a two-layer model to keep costs down. 

 

Keywords: Photovoltaic systems, Energy storage, Hybrid storage systems, Battery energy storage, 
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1. Introduction 

Photovoltaic (PV) generation is becoming more widespread globally, however its variability due to 

weather conditions can affect power quality and reliability [1]. Energy storage systems (ESS) can smooth PV 

output fluctuations and shift generation to match demand, promoting self-consumption [2]. Determining optimal 

ESS sizing and technology selection is crucial for cost-effective PV-ESS systems [3]. 

Single ESS has limitations. Batteries have low power density while supercapacitors have low energy 

density [4-8]. Hybrid ESS (HESS) combining both can utilize their complementary characteristics [9-14]. Proper 

HESS configuration and coordination is needed to stabilize PV fluctuation and optimize operation [15]. 

Existing works have drawbacks. Frequency domain methods overly simplify allocation [10-14]. Direct 

optimization lacks minute-level resolution [15]. Reinforcement learning has a high computational burden. There 

is a need for an integrated strategy considering investment and operating costs, PV smoothing, and optimized 

scheduling. 

This paper proposes a two-layer optimization strategy to configure battery and supercapacitor capacities 

for a PV-HESS system. The upper layer minimizes total cost while the lower layer uses deep reinforcement 

learning to optimize operation and obtain realistic operating costs. The approach smooths PV variability while 

optimizing the PV-HESS system. The introduction establishes the needs for optimal HESS sizing/technology 

selection for PV systems. A new strategy is proposed utilizing a two-layer model and reinforcement learning to 

consider costs and PV fluctuation suppression. The approach will be demonstrated in a PV system case study. 
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2. The hybrid energy storage system for photovoltaics 

The hybrid energy storage system (HESS), photovoltaic generation, and utility grid connection make up 

the analyzed system configuration [16,17]. The HESS combines a supercapacitor for high power density with a 

battery for long-term storage. The PV output initially satisfies the load requirement. Based on power price signals 

and HESS state of charge, the HESS or utility grid fills any gap [18-20]. Overage PV generation above the load 

is used to power the HESS.  

The HESS aims to smooth rapid PV fluctuations and shift energy supply across time to increase self-

consumption and reduce grid purchases. The battery provides longer duration storage while the supercapacitor 

handles short timescale variability. Their coordination enhances system performance [21,22]. The PV-HESS 

system architecture utilizes PV as the primary generation source along with a coordinated battery-supercapacitor 

HESS to manage PV intermittency. The HESS smooths fluctuations and optimizes operation to improve 

economics and reliability. Appropriately sizing the HESS capacities is key to realizing these benefits [23-25]. 

 

 
 

Fig 1: PV-HESS's structure. 

 
Fig 2: DDPG's structure. 

 

3. Proposed HESS two-layer capacity configuration approach 

HESS capacities while reducing total cost, a two-layer optimisation model is created. The battery and 

supercapacitor power/energy capabilities are determined by the top layer. It reduces the total annual operating 
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costs and HESS investment costs offered by the bottom layer approach. Capacity is restricted within reasonable 

limitations by constraint [26,27]. 

The lower layer optimizes the PV-HESS operation over a year using deep reinforcement learning 

(DDPG). It minimizes operating cost by controlling HESS charging/discharging, reducing PV curtailment and 

fluctuation penalties. The PV output, load, electricity price, and HESS state of charge are inputs. The 

battery/supercapacitor power outputs are the control actions [28,29]. 

The upper layer obtains realistic operating costs from the lower layer to make informed capacity 

investment decisions. The lower layer optimizes operation based on the capacities set by the upper layer. The 

integrated strategy configures optimal HESS sizing while smoothing PV variability and coordinating devices. 

The two-layer approach determines cost-optimal HESS capacities and power ratings considering 

investment costs, operating costs, and operational constraints. Deep reinforcement learning is used to optimize 

system operation and provide accurate data to the sizing layer. 

 

3.1. The upper layer 

The upper layer optimization minimizes the total cost (Ctotal) of the PV-HESS system including 

investment and operating costs: 

min Ctotal = Cinvest + Cop 

where Cop is the annual operating cost from the lower layer model and Cinvest is the investment cost: 

Cinvest = Ccons,ba + Ccons,sc 

The battery investment cost (Ccons,ba) is calculated as: 

Ccons,ba = (c1baPinv + c2baSinv)(1 + r)nba - (1 + r)-nba 

where c1ba and c2ba are the battery power and capacity cost coefficients, Pba and Sba are the optimized capacities, 

r is the discount rate, and nba is the battery lifetime. 

 

Similar equations are used to calculate the supercapacitor investment cost (Ccons,sc) based on its cost parameters 

and decision variables. 

Capacity constraints limit the battery and supercapacitor sizes: 

Sba,min ≤ Sba ≤ Sba,max 

Ssc,min ≤ Ssc ≤ Ssc,max 

The higher layer optimization reduces the PV-HESS system's overall cost, including startup and ongoing 

expenses. The battery and supercapacitor capacities serve as the decision-making factors. 

The annual operational cost from the bottom layer model and the HESS investment cost makes up the 

overall cost goal function. The purchase cost coefficients and lifetime characteristics are used to compute the 

investment cost from the configured power and energy capabilities of the battery and supercapacitor. 

Based on practical system limits, constraints set minimum and maximum limits on the battery and 

supercapacitor capacities. 

The top layer offers capacity optimization to reduce PV-HESS lifecycle costs. The lowest layer 

operational optimisation determines the operating costs. The higher layer's capacity acts as inputs for the lower 

layer. The cost-optimal capacities for the PV-HESS battery and supercapacitor are determined by the top layer 

optimization taking into account the operating and procurement costs discovered through reinforcement learning. 

Capacity restrictions guarantee that only workable solutions are available. 

 

3.2 The lower layer  

The primary purpose 

The lower layer optimization seeks to reduce the PV-HESS system's yearly operating expense. The 

battery and supercapacitor charging and discharging controls are the decision variables. 

The operating cost objective function comprises: 

● PV-HESS operation cost 

● Electricity purchase cost from the grid 

● Penalty costs for PV power curtailment and fluctuations 
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The lowest layer lowers total operating costs, minimizes PV curtailment, and smooths PV variations by 

carefully managing the HESS charging and discharging. 

The model's inputs include the PV output, load demand, electricity price, and HESS state of charge. The control 

outputs are the set-points for the supercapacitor and battery power. 

The bottom layer optimisation seeks to reduce the PV-HESS system's annual operational cost (Cop): 

min Cop = Cop_pv_hess + Cbuy + Cpenalty 

where: 

Cop_pv_hess = PV-HESS operation cost 

Cbuy = Electricity purchase cost from the grid 

Cpenalty = Penalty costs for PV curtailment and fluctuations 

The decision variables are the HESS battery and supercapacitor charging/discharging control signals. By 

optimizing these controls, the lower layer minimizes the overall operating cost. 

Key inputs are the PV generation, load demand, electricity price, and HESS state of charge. The battery 

and supercapacitor power set-points are the optimized control outputs. 

The lower layer reinforcement learning optimization determines optimal HESS operation to minimize 

the PV-HESS annual operating cost. This provides realistic cost data to the upper layer capacity optimization 

model. 

(1) PV-HESS operation cost: 

Cop_pv_hess = Σ[cpvPop(t) + cbaPba(t) + cscPsc(t)]Δt 

 

where cpv, cba, csc are the PV, battery, and supercapacitor cost coefficients. Pop, Pba, Psc are the PV, battery, 

and supercapacitor power. 

(2) Electricity purchase cost: 

Cbuy = Σ[cbuy(t)Pbuy(t)]Δt 

 

where cbuy is the time-varying electricity price and Pbuy is the purchased grid power. 

 

(3) Penalty costs: 

 

Cpenalty = { 

ω1[Pt(t) - ΔPlim]Δt, if ΔPt > ΔPlim 

ω2[-Pbuy(t)]Δt, if Pbuy(t) < 0 

 

where ω1, ω2 are penalty coefficients. ΔPt is the power fluctuation and ΔPlim is the limit. Penalties apply for 

fluctuations exceeding the limit and PV curtailment (Pbuy < 0). 

The lower layer operating cost comprises the HESS operation cost, electricity purchases, and penalties for 

excessive PV fluctuations and curtailment. Optimizing HESS coordination minimizes this cost. 

 

(1) Power balance constraint: 

Ppv(t) + Pba(t) + Psc(t) + Pbuy(t) = Pload(t) 

 

where Pload is the load demand. 

 

(2) Battery constraints: 

 

Pba,min ≤ Pba(t) ≤ Pba,max 

Pba(t) - Pba(t-1) ≤ Dba 

Eba(t) = Eba(t-1) + Pba(t)Δt 

Eba,min ≤ Eba(t) ≤ Eba,max 

Eba(0) = Eba,ini, Eba(T) = Eba,end 
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where Pba,max and Dba are the power and ramp limits, and Eba,min/max the energy limits. 

(3) Supercapacitor constraints: 

Psc,min ≤ Psc(t) ≤ Psc,max 

Esc(t) = Esc(t-1) + Psc(t)Δt 

Esc,min ≤ Esc(t) ≤ Esc,max 

Esc(0) = Esc,ini, Esc(T) = Esc,end 

where Psc, max and Psc,min is the supercapacitor power limits, and Esc,min/max the energy limits. Esc,ini and 

Esc,end are the initial and end of cycle energy levels. The supercapacitor has constraints on power, energy, and 

ramping similar to the battery. The coordination of the battery and supercapacitor is optimized to minimize the 

PV-HESS operating cost. 

 

 
Fig 3: PV power and load at 6:00-18:00 

 

 
Fig 4: The power fluctuation in PCC 

 

3.3 Deep deterministic policy gradient-based solution algorithm 

Conventional optimisation techniques are unable to effectively solve the suggested two-layer model due 

to the minute-level time resolution required to optimize the supercapacitor performance. 

Instead, Deep Deterministic Policy Gradient (DDPG), a deep reinforcement learning technique, is used. 

Complex problems with several variables and constraints can be optimized using DDPG. 

The inputs to the DDPG algorithm, which represents the environmental condition, are the PV power, 

load demand, electricity price, and HESS state of charge. The outputs dictating the control actions are the set-

points for the battery and supercapacitor power. 
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To be compatible with the reinforcement learning method, the goal of minimizing operational costs is 

changed to maximizing a reward function. The algorithm discovers the most cost-effective control strategy for 

the HESS. 

The suggested model can be solved effectively in a challenging, high-resolution simulation environment 

thanks to DDPG. This offers a sizable benefit over conventional optimisation methods. 

The two-layer HESS capacity setup and operating strategy can be optimized using deep reinforcement 

learning via the DDPG algorithm, offering a practical solution. 

 

4. Case study  

 

4.1 Setting parameters 

The suggested approach is used as a case study for a 1MW PV demonstration project in Shandong 

Province, China. 

As illustrated in Figure 3, the PV output power from 6:00 to 18:00 with a one-minute resolution is 

employed. The daily scheduling cycle for PV-HESS is from 6:00 to 18:00. 

As inputs to the DDPG algorithm, the PV generation, load demand, and electricity price data for these 

hours are retrieved throughout a complete year. 

Tables 1 and 2 contain important parameter settings such the HESS cost and performance coefficients. 

These correspond to reasonable values for the supercapacitor and battery systems. 

An existing 1MW PV plant's detailed PV, load, and price statistics are used in the case study. Based on 

actual systems, the parameters for the battery and supercapacitor models have been established. This offers a 

realistic illustration of the ideal HESS sizing strategy. 

 

 
Fig 5: The SOC of HESS 

 
Fig 6: The reward of DDPG 
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Table 1: Modified HESS parameters 

 

ESS Type 

Purchase Cost Coefficients 

(CNY/kW) 

Operating Cost 

(CNY/kWh) 

Lifetime 

(years) 

SOC 

Limits 

Battery 4000 0.04 15 [0.2, 0.9] 

Supercapacitor 1200 0.015 10 [0.05, 0.8] 

 

Table 2:  Modified Time of Use Tariff 

Time Period Electricity Price (CNY/kWh) 

6:00-8:00 0.45 

8:00-12:00 1.15 

12:00-17:00 0.85 

17:00-18:00 1.4 

 

Table 3 presents the capacity optimization results for the PV system case study, comparing four 

configurations: no storage, battery only, supercapacitor only, and the proposed HESS (battery + supercapacitor). 

 

Table 3: HESS Capacity Optimization Results 

Configuration 

Battery 

(kW/kWh) 

Supercapacitor 

(kW/kWh) 

Investment 

Cost (kCNY) 

Operating 

Cost (kCNY) 

Total Cost 

(kCNY) 

No storage 0 0 0 645.85 645.85 

Battery only 102.24/320.08 0 143.32 478.72 622.04 

Supercapacitor 

only 
0 309.27/17.11 53.54 556.51 610.05 

Proposed HESS 80.29/289.65 261.67/12.04 167.76 428.23 595.99 

The suggested HESS, which combines a supercapacitor and battery, has the lowest overall cost. Despite 

having a greater upfront cost, HESS effectively lowers operational and penalty expenses, which leads to a 7.7% 

lower overall cost as compared to the scenario where there is no storage.In the suggested HESS technique, the 

table shows the cost-minimal sizes for the battery and supercapacitor as well as the optimized capacities for the 

various combinations. Figure 4 compares the power fluctuation at the PCC before and after the optimized HESS 

was installed. The fact that fluctuations are greatly minimized shows how well the HESS works to smooth out PV 
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variability. In order to withstand high frequency variations with significant instantaneous amplitudes, the 

supercapacitor rapidly charges and discharges. Additionally, the battery helps to reduce swings at lower 

frequencies. Figure 5 shows how the supercapacitor frequently switches between the charging and discharging 

states. The battery has fewer state changes, which lengthens its lifespan and lowers expenses. The reward function 

from the DDPG algorithm throughout training iterations is shown in Figure 6. The incentive starts out modestly 

but rises as more training samples are collected. The reward stabilizes after 2000 iterations, indicating that the 

algorithm has reached an optimized solution. The proposed technique may successfully size and operate the PV-

HESS system according to the results of the analysis of the power fluctuations, HESS operation, and DDPG 

reward function. The strategy maximizes economics while minimizing volatility. 

 

5. Conclusion 

The capacity configuration of a hybrid battery-supercapacitor energy storage system (HESS) for a 

photovoltaic (PV) installation is proposed in this research as an optimisation technique. The objective is to reduce 

overall costs while minimizing variations in PV production. 

A two-layer model is created, the upper layer of which establishes the ideal HESS component sizes by 

reducing startup and ongoing expenses. Deep reinforcement learning is used in the lowest layer to enhance system 

performance and provide accurate cost information. 

The battery and supercapacitor capacities are restricted to keep them within practical ranges. The minute-

resolution model can be solved using the deep deterministic policy gradient approach. 

A case study demonstrates the approach for a 1 MW PV system in China. Results show the optimized 

HESS decreases the total cost by 7.7% compared to no storage. The supercapacitor handles high frequency 

fluctuations while the battery participates in smoothing and shifting energy. 

In conclusion, the proposed HESS capacity optimization strategy smoothly integrates PV generation 

using properly sized battery and supercapacitor storage. The approach reduces lifetime costs while managing PV 

variability. The model provides a valuable tool for designing cost-effective PV-HESS systems. 
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