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Abstract: - This paper, delineates how catastrophe affect the Birth-Death and Immigration Process (BDI). To 

find the general solution for the population size distribution, the Probability Generating Function (PGF) is used. 

When the rates of birth, death, immigration, and catastrophe are remain's constant, the explicit solution of mean 

and variance is also obtained. In addition, the mean and variance are time dependent. The system's behavior, a 

numerical analysis is presented for investigated. 
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1. Introduction 

A lot of real-world phenomena, including queues, inventory, evolution, population biology, and epidemiology, 

can be modeled using birth-death processes. Although assuming that these rates are independent of time makes 

it easier to analyze the stochastic process that is being modeled, the above rates are frequently time-dependent in 

practical applications. In this note, a straightforward BDI process is taken into account. A Catastrophe, which 

happen occasionally and make the population disappear, have an impact on this process. The effects of different 

types of catastrophes on population processes had been examined by Granita [1], Getz [2], E.G. Kyriakidis et al. 

[4], Michael et al. [8], and Sindayigaya [3]. Some researchers discuss the recurring and progressive nature of the 

birth and death processes in random environments [8-10]. The main objective of this paper is to examine the 

BDI process using a catastrophe parameter and based on the DDE. Using a PGF, the general solution is 

obtained, which ultimately results in the determination of the mean and variance of the population and, in the 

end, yields numerical examples. 

Assumption and Postulates of the model 

If R(t) represents the total number of members at time ‘t’ and 𝑃ℓ (t)= 𝑃ℓ [R(t)=l /R(0)=0]. 

Birth and Death rates are proportional to population size, as in the straight forward birth and death processes 

with a birth rate 𝜆 > 0 and a death rate 𝜇 > 0 with immigration rate 𝜈 > 0 will happen regardless of the size of 

the population.  Additionally, the probability of a catastrophe is affected by the size of the population and will 

occur at a rate 𝜈 > 0. 

2. The Transient probabilities:  

The common argument demonstrates that 𝑃𝓵(t) satisfies using the forward Kolmogorov equations 

 

 P𝓵
′(t) = (𝓵 + 1) 𝜇 𝑃𝓵+𝟏(t) + ((𝓵 - 1) 𝜆+ 𝜈)𝑃𝓵−𝟏(𝒕) - (𝓵 (𝜇+ 𝜆) + 𝜈 +  𝛾) 𝑷𝓵 (t)                                                 (1)            

  

 P0
′(t)= 𝜇P1(t) - (𝜈 +  𝛾)  P0(t)                                                                                                                            (2) 

 

Letting  

                                 𝐺(𝑆, 𝑡) = ∑ 𝑃𝑗(𝑡)𝑆𝓵∞
𝓵=0                                                                                                      (3)                                   
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be the probability generating function {𝑃𝓵(𝑡)}. 

 So 𝐺(𝑆, 𝑡) satisfies the linear partial differential equation: 

 
𝜕𝐺

𝜕𝑡
= (𝜆𝑆 −  𝜇)(S-1) 

𝜕𝐺

𝜕𝑆
+( 𝜈(𝑆 − 1) − 𝛾) 𝐺                                                                                                          (4) 

 

For the purpose of simplicity, since we are consider a process involving immigration, the initial conditions  

P0(0) = 1. This gives 𝐺(S, 0) = 1. The method of solving equation (4) is sketched and, in the broadest sense for 

constant parameters, yields a generating function for the distribution of population size at each time t. This 

appears to be a novel outcome of the BDI with Catastrophe in this situation. Finally, the solution of (4) is    

 

𝐺(𝑆, 𝑡) = [
(𝜇−𝜆𝑆)+𝜆(𝑆−1)exp {(𝜆−𝜇)𝑡}

𝜇−𝜆
]

−𝜈

𝜆
{∑ 𝑚𝓵

∞
𝓵=0 [

𝜇−𝜆𝑆+𝜇(𝑆−1)exp {(𝜆−𝜇)𝑡}

𝜇−𝜆𝑆+𝜆(𝑆−1)exp {(𝜆−𝜇)𝑡}
]

𝓵

} .                                                   (5)     

 

3.  Determination of the Mean and Variance for the BDI 

 

The mean and variance, which can be easily determined, are the two key distributional moments. 

Differentiating (3) with respect to S and again with respect to S, then put S=1, we obtain 
𝜕𝐺

𝜕𝑆
(1, 𝑡) = ∑ 𝓵𝑃𝓵(𝑡) ≜∞

𝓵=0  𝐸(𝓵)                                                                                                                  (6) 

𝜕2𝐺

𝜕𝑆2
(1, 𝑡) = ∑ 𝓵(𝓵 − 1)𝑃𝓵(𝑡) ≜∞

𝓵=0  𝐸(𝓵(𝓵 − 1))                                                                                        (7)                                                                                  

If the function is a probability distribution, then the first moment is the mean value  𝑘̅(t) and  second central 

moment is the variance c2(t)  at time t. 

Without initially solving for the distribution, it is straightforward to calculate the mean value and variance from 

(4). Differentiating (4) with respect to S and (6) with respect to t. 

If S=1, then we have  

 

                       
𝜕2𝐺

𝜕𝑆𝜕𝑡
(1, 𝑡) =

𝑑𝑘̅(t)

𝑑𝑡
                                                                                                                          (8) 

             

Similarly, using (7) 

  
𝜕3𝐺

𝜕𝑆2𝜕𝑡
(1, 𝑡) =

𝑑

𝑑𝑡
 E(𝓵 (𝓵 -1)) = 

𝑑

𝑑𝑡
E(𝓵 2)- 

𝑑

𝑑𝑡
𝑘̅(t)                                                                                                 (9)                       

  

Putting S=1 and differentiating (4) with respect to S, we get  

 
𝑑𝑘̅(t)

𝑑𝑡
− (𝜆(𝑡) − 𝜇(𝑡) − 𝛾(𝑡))𝑘̅(t) = 𝜈(𝑡)                                                                                                  (10)                                                                                     

𝑑

𝑑𝑡
𝐸(𝓵2) − (2𝜆(𝑡) − 2𝜇(𝑡) − 𝛾(𝑡))𝐸(𝓵𝟐) = (2𝜈(𝑡) + 𝜆(𝑡) + 𝜇(𝑡))𝑘̅(t) + 𝜈(𝑡)                                    (11)                      

 

Hence, 

                 𝑐2(𝑡) = 𝐸(𝓵2) − 𝑘̅2(t)                                                                                                                    (12)                                                                                            

Applying the initial conditions to the equations (10) and (11), we have  

                      𝑘̅(0) = 𝑘0                                                                                                                                   (13)                 

                      𝐸(𝓵2)|𝑡=0 = 𝑐0
2 + 𝑘0

2                                                                                                                  (14)               

It is easy to solve these equations considering initial conditions. 

   Let 

                     ∫ ( 𝜆(𝜏) − 𝜇(𝜏) − 𝛾(𝜏))𝑑𝜏 = 𝑟(𝑡)
𝑡

0
                                                                                             (15) 

The integrating factor for (15) is then  𝑒−𝑟(𝑡), so that  

            𝑘̅(t) =  𝑒𝑟(𝑡)(∫ 𝜈(𝜏) 𝑒−𝑟(𝑡)𝑑𝜏 + 𝜌
𝑡

0
 )                                                                                                  (16)                                                     

and the initial conditions gives 

                                                                         𝜌 = 0                                                                              (17)                                                                     
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If 𝑣 (t) and 𝛾(t) are chosen as the constants and 𝜆(t) and 𝜇(t) are both constants, we get   

 

𝑟(𝑡) = (𝜆 − 𝜇 − 𝛾)𝑡, 

So that  

                                          𝑘̅(t) =
𝑣

(𝜇+𝛾−𝜆)
(1 − exp {(𝜆 − 𝜇 − 𝛾)𝑡})                                                 (18)                                            

 

This is an explicit solution for the average time-varying trajectory of BDI process with catastrophe.  

 In a similar manner, using equation (12), solving (11) subject to (14), and constant parameters, we get 

𝑐2(𝑡) =
−𝑣2(exp {(𝜆−𝜇−𝛾)𝑡}−1)2

(𝜆−𝜇−𝛾)2 +
2(𝑣𝜆𝛾+𝑣𝜆𝜇−𝑣2𝜆+𝑣2𝜇+𝑣2𝛾−𝑣𝜆2)

(2𝜆−2𝜇−𝛾)(𝜇+𝛾−𝜆)(𝜆−𝜇)
(exp {(2𝜆 − 2𝜇 − 𝛾)𝑡} − 1)                        (19)                                           

 

Equation (19) is an explicit solution for the time-varying process of dispersion of the BDI process with 

catastrophe. 

4.  Numerical Analysis: 
     Tables: 1 to 16 contains the numerical results, and figures A to D shows the corresponding graphs for each 

table.        

Table 1 

𝝀=1.5, 𝝁=1,  𝝂 = 𝟎. 𝟏, 𝜸 = 𝟎. 𝟎𝟏 

t 0 1 2 3 4 5 

𝑘̅(t) 0 0.129044 0.339685 0.683517 1.24476 2.16089 

 

Table 2 

𝝀=1.6,  𝝁=1,  𝝂 = 𝟎. 𝟏, 𝜸 = 𝟎. 𝟎𝟏 

t 0 1 2 3 4 5 

𝑘̅(t) 0 0.136269 0.382097 0.825568 1.62558 3.06881 

Table 3 

𝝀=1.7, 𝝁=1,  𝝂 = 𝟎. 𝟏, 𝜸 = 𝟎. 𝟎𝟏 

t 0 1 2 3 4 5 

𝑘̅(t) 0 0.144017 0.431145 1.0036 2.1449 4.42035 

Table 4 

𝝀=1.8, 𝝁=1,  𝝂 = 𝟎. 𝟏, 𝜸 = 𝟎. 𝟎𝟏 

t 0 1 2 3 4 5 

𝑘̅(t) 0 0.152329 0.487969 1.22752 2.85704 6.44751 

Table 5 

𝝀=1.5, 𝝁=1,  𝝂 = 𝟎. 𝟏, 𝜸 = 𝟎. 𝟒𝟐 

t 0 1 2 3 4 5 

𝑘̅(t) 0 0.104109 0.216889 0.339061 0.47141 0.614781 

Table 6 

𝝀=1.5, 𝝁=1,  𝝂 = 𝟎. 𝟏, 𝜸 = 𝟎. 𝟓𝟏 

t 0 1 2 3 4 5 

𝑘̅(t) 0 0.0995017 0.198013 0.295545 0.392106 0.487706 

Table 7 

𝝀=1.5, 𝝁=1,  𝝂 = 𝟎. 𝟏, 𝜸 = 𝟎. 𝟔𝟑 

t 0 1 2 3 4 5 

𝑘̅(t) 0 0.0937727 0.176114 0.248418 0.311907 0.367657 

Table 8 

𝝀=1.5, 𝝁=1,  𝝂 = 𝟎. 𝟏, 𝜸 = 𝟎. 𝟕𝟑 

t 0 1 2 3 4 5 

𝑘̅(t) 0 0.089332 0.160311 0.216706 0.261513 0.29114 

 

Table 9 

𝝀=1.5, 𝝁=1,  𝝂 = 𝟎. 𝟎𝟏, 𝜸 = 𝟎. 𝟎𝟐 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 44 No. 4 (2023) 

__________________________________________________________________________________ 

   2896 

t 0 1 2 3 4 5 

𝑐2(𝑡) 0 0.10142 0.37479 1.0997 3.02997 8.1714 

 

Table 10 

𝝀=1.6, 𝝁=1,  𝝂 = 𝟎. 𝟎𝟏, 𝜸 = 𝟎. 𝟎𝟐 

t 0 1 2 3 4 5 

𝑐2(𝑡) 0 0.102346 0.434773 1.51552 5.03093 16.4688 

Table 11 

𝝀=1.7, 𝝁=1,  𝝂 = 𝟎. 𝟎𝟏, 𝜸 = 𝟎. 𝟎𝟐 

t 0 1 2 3 4 5 

𝑐2(𝑡) 0 0.105117 0.522156 2.17837 8.75912 34.9134 

Table 12 

𝝀=1.8, 𝝁=1,  𝝂 = 𝟎. 𝟎𝟏, 𝜸 = 𝟎. 𝟎𝟐 

t 0 1 2 3 4 5 

𝑐2(𝑡) 0 0.110174 0.644082 3.2342 15.8055 76.8344 

Table 13 

𝝀=1.5, 𝝁=1,  𝝂 = 𝟎. 𝟎𝟏, 𝜸 = 𝟎. 𝟎𝟐 

t 0 1 2 3 4 5 

𝑐2(𝑡) 0 0.10242 0.37479 1.0997 3.02997 8.1714 

Table 14 

𝝀=1.5, 𝝁=1,  𝝂 = 𝟎. 𝟎𝟏, 𝜸 = 𝟎. 𝟎𝟑 

t 0 1 2 3 4 5 

𝑐2(𝑡) 0 0.101829 0.369938 1.07643 2.93905 7.85114 

Table 15 

𝝀=1.5, 𝝁=1,  𝝂 = 𝟎. 𝟎𝟏, 𝜸 = 𝟎. 𝟎𝟒 

t 0 1 2 3 4 5 

𝑐2(𝑡) 0 0.101241 0.365159 1.05372 2.85105 7.54405 

Table 16 

𝝀=1.5, 𝝁=1,  𝝂 = 𝟎. 𝟎𝟏, 𝜸 = 𝟎. 𝟎𝟓 

t 0 1 2 3 4 5 

𝑐2(𝑡) 0 0.100658 0.360451 1.03153 2.76588 7.24957 

 

Figure (A) depicts a comparison between the mean system size  𝑘̅(t) versus time t for different arrival rate 𝜆 with 

the identical values for the parameters. Based on the graphical illustration, the mean system size of the queue 

grows as the arrival's rate grows. 

Figure (B) depicts a comparison of the mean system size 𝑘̅(t) versus time t with varying values of 𝜈 with the 

same values for the parameters. When the value of 𝜈 increases, the mean system size of the queue rapidly 

decreases. 

 Figure (C) depicts  a comparison of the variance system size  C2(t) and time t with different arrival rate 𝜆 with 

the same parameter values. It clearly displays that as variance of number of customers in the system increases 

when arrival rate increases. 

Figure (D) depicts a comparison of the variance system size  C2(t) versus time t with varying values of 𝜈 and the 

identical values for the parameters. When the value of 𝜈  increases, the variance system's  size of the queue 

rapidly decreases. 
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Figure (A)- 𝑘̅(t)  versus t 

 

 
Figure (B) - 𝑘̅(t)  versus t 
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Figure (C)- 𝑐2(𝑡) versus t 

 
Figure (D)- 𝑐2(𝑡) versus t 
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Conclusion: 

This paper, using the PGF to obtain the general form for the partial differential equation (pde) for the BDI 

process with catastrophe. For BDI process with catastrophe, the mean and variance functions have been 

accurately determined. A numerical analysis is also provided to facilitate further investigation of the system's 

behavior. 
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