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Abstract: -This research paper introduces an innovative approach to assessing code complexity in object-

oriented programming, focusing on enhancing the Improved CB (ICB) metric. Code complexity significantly 

impacts software quality and maintainability. The study presents an advanced complexity measurement tool that 

refines the ICB metric by considering factors like inheritance depth, control structure types, nesting levels, 

statement size, compound conditionals, threads, and recursion. These refinements improve the accuracy of code 

complexity assessment, aiding informed decision-making in software development and maintenance. The paper 

reviews related cognitive-based complexity metrics, emphasizing their contributions to code complexity 

evaluation. It discusses the importance of code complexity assessment in software engineering. The proposed 

system, a real-time Java code complexity calculation desktop application, offers insightful metrics, including 

code size and ICB values, presented through charts for better code comprehension. It underscores the necessity 

of entering a code for meaningful results. In conclusion, the Code Analyzer Tool provides a systematic, data-

driven approach to code quality assessment, facilitating code optimization, and clear communication. It 

promises to be an indispensable asset for software development teams dedicated to delivering maintainable and 

high-quality software solutions. 
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1. Introduction 

In the field of software engineering, assessing the complexity of code stands as a crucial aim, directly impacting 

software quality and maintainability. The present study explores this essential aspect, particularly focusing on 

code complexity measurement within the context of object-oriented programming. The complexity of software 

code is a well-recognized concern in the software engineering domain. As modern software systems become 

more complex, it becomes compulsory to develop powerful metrics that effectively capture the various nature of 

code. Object- oriented metrics have emerged as an influential approach in this pursuit, offering a comprehensive 

view of code complexity by considering factors such as control structures, nesting levels, and inheritance 

relationships. The ICB measure is one such metric that has gained prominence due to its ability to encapsulate 

the complexities inherent in object-oriented code. 

The significance of this research lies in its potential to enhance software quality, maintainability, and overall 

system performance. By refining the ICB measure using advanced tool functions, the accuracy of code 

complexity assessment can be elevated, leading to better decision-making in software development and 

maintenance. The significance of this research lies in its potential to enhance software quality, maintainability, 

and overall system performance. By refining the ICB measure using advanced tool functions, the accuracy of 

code complexity assessment can be elevated, leading to better decision-making in software development and 

maintenance. This study seeks to introduce a novel complexity measuring tool based on the ICB metric These 

functions of the proposed system address specific complexities associated with token analysis, inheritance 
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depth, type and nesting level of control structures, threads, compound conditions, and recursion, to provide a 

precise of code complexity assessment. 

The following sections of this paper e systematic approach taken to achieve this enhancement and the potential 

indication for software engineering practices are discussed in Section 3. The functions of the proposed system 

are discussed in Section 4. Furthermore, the paper concludes by highlighting the broader significance of our 

findings in the context of code complexity evaluation. 

2. Related Works 

The Cognitive Functional Size (CFS) metric, developed by Wang and Shao in 2003[1], served as the foundation 

for the idea of measuring complexity in software development using cognitive-based metrics. This metric was 

created to assess how difficult it is for people to comprehend a piece of software. Basic software control 

structures are given importance values by the CFS metric. It depends on the number of keyboard inputs and 

outputs as well as the combined cognitive significance of these control structures. The field of cognitive 

informatics uses empirical and verifiable methods, just like other scientific disciplines. 

In January 2006, Kushwaha and Misra introduced the Cognitive Information Complexity Measure (CICM) to 

grasp how complex the information in a program is and how effectively it's coded [2]. It was determined by 

considering the cognitive weight of internal basic control structures, identifiers, operators, and the number of 

lines of code.  

Sanjay Misra introduced two complexity measures in the same year. The Cognitive Weight Complexity 

Measure (CWCM) was simple to understand and compute [3] since it only considered the cognitive significance 

of internal basic control mechanisms. Later that year, he unveiled the Modified Cognitive Complexity Measure 

(MCCM), which included the total number of operands and operators [4] in addition to the significance of 

fundamental control structures. A metric known as Class Complexity (CC) was developed by Sanjay Misra in 

2007 to evaluate the complexity of an object-oriented (OO) system [5]. Other proposed metrics for object-

oriented programming do not consider the internal architecture of the class, subclass, and member methods like 

the proposed measure does. By considering basic control structures (BCSs), this metric computed the 

complexity of a method. Next, it totalled up the complexities of all the methods inside a class to calculate the 

complexity of that class. The overall complexity of the complete OO system was then calculated by adding the 

total complexity of all the classes. 

The Weighted Class Complexity measure (WCC), developed by Sanjay Misra and Akman in 2008 [6], is used to 

assess the complexity of object-oriented (OO) systems. WCC calculated complexity similarly to the Class 

Complexity (CC) measure by adding up the complexity of each method within a class to establish class 

complexity, and then combining these class complexities to determine the overall OO system complexity. 

However, WCC went further by not only considering the cognitive weight of internal basic control structures 

(BCSs) but also factored in complexity stemming from global attributes and message calls. Unlike previous 

metrics, which typically assigned a fixed weight of 2 to method calls between classes, WCC accounted for both 

the cognitive weight of the method call and the complexity of the called method when evaluating message calls 

between classes. For calls occurring within the same class, only the method call weight was considered in the 

complexity calculation. 

Gupta and Chhabra proposed cognitive-spatial complexity measures in 2009[7] to evaluate the complexity of 

software classes and objects. These metrics used a program's spatial and architectural characteristics to 

determine its complexity. The architectural aspect considered the significance of basic control structures 

(BCSs), while the spatial aspect considered how far away program parts were in terms of the number of lines of 

code. 

To evaluate the architecture of object-oriented (OO) systems, Sanjay Misra, Akman, and Koyuncu proposed the 

Cognitive Code Complexity measure (CCC) in 2011. The CCC uses a three-stage methodology similar to their 

prior metrics, CC and WCC [8]. CCC used cognitive weights for basic control structures (BCSs) to calculate 
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complexity at the method level while taking the inheritance aspect into account. Notably, when assessing the 

program's overall complexity in the third step, CCC also took inheritance into account. Two more cognitive-

weight-based complexity metrics were introduced that same year. J. K. Chhabra's Code Cognitive Complexity 

measure (CCC) considered input/output parameters, cognitive weights, and the number of lines of code between 

module calls and their definitions or uses [9]. Chhabra enhanced Shao and Wang's cognitive weights for BCSs 

by defining cognitive weights for variable and constant data types, in contrast to earlier metrics that mainly used 

Shao and Wang's cognitive weights for BCSs. 

The Chhillar and Bhasin CB measure, another metric, evaluated program complexity based on four criteria: 

inheritance, control structure type, control structure nesting level, and statement size, which was determined by 

the number of operators, operands, functions/methods, and strings contained in each executable statement [10]. 

Source [11] provides enhancements for the CB measurements, while source [12] shows limitations of the CB 

statistic. Additionally, a number of research [13], [14], [15]and suggest improvements to this metric. 

The Code Comprehending Measure (CCM) was developed by Gurdev, Satinderjit, and Monika in February 

2012 to evaluate complexity based on three factors: data volume, structural complexity, and data flow [16]. The 

unique variables and operators in a basic control structure (BCS) and how frequently they appeared were 

considered to assess data volume. In terms of structural complexity, BCSs' cognitive weight was important. The 

data flow factor considered how data was transferred across BCSs using variables. Sanjay Misra and his team 

unveiled a set of cognitive metrics in June of the same year to assess the complexity of methods, messages, 

attributes, classes, and code in object-oriented (OO) programming. Later on in the year, Aloysius and Arockiam 

proposed their cognitive complexity metric [17], which evaluated the complexity brought on by different kinds 

of coupling between classes, including Data Coupling (DC), Global Data Coupling (GDC), Internal Data 

Coupling (IDC), Lexical Content Coupling (LCC), and Control Coupling (CC). 

The Multi-Paradigm Complexity (MCM) measurement was developed by S. Misra and colleagues in 2013 and 

incorporates a number of elements from both procedural and object-oriented (OO) programming, including 

attributes, variables, basic control structures (BCSs), objects, method invocations using objects, cohesion, and 

inheritance [18]. For the purpose of evaluating program complexity, K. Jakhar and K. Rajnish presented the 

New Weighted Method Complexity (NWMC) metric in November 2014 [19] It made use of keyboard inputs, 

outputs, local and formal parameters, as well as cognitive weights given to BCSs. A new weighted complexity 

metric that considered cognitive weights assigned to flow chart controls, the quantity of operations, the number 

of variable declarations, external libraries and functions, function arguments, and locally called functions was 

introduced in 2015 by M. A. Shehab and colleagues [20]. 

A large number of software complexity measures have been introduced around the world. Selecting the right 

complexity measure remains a challenge due to each measure's distinct advantages and drawbacks. Researchers 

continually seek a comprehensive measure that encompasses most software parameters. In addition to proposing 

complexity metrics there have been several studies by comparing the existing metrics including cognitive based 

complexity metrics as well. Source[21], source[22] and source[23] have been comparatively studied that 

metrics. 

In addition to proposing complexity metrics, complexity measuring tools have also been suggested based on 

those measures. These tools help users by automatically assessing the quality of source code and estimating 

project schedules using a hierarchical metrics model. It provides quality notifications, analyses metric results, 

offers insights into the code, and suggests ways to address issues. This tool categorizes metrics into Object 

Oriented, Complexity Oriented, Size Oriented, and Maintainability Oriented, aiming to improve software 

engineering practices and provide valuable information about source code. 

3. ICB Measure 

The ICB measure was introduced as an improvement to the CB metric in 2017 by De Silva et al[14]. It 

computes complexity based on the following factors: 
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3.1 Inheritance level of classes 

Chhillar and Bhasin came up with a way to measure the importance of statements in different classes within a 

group. They gave a weight of zero to statements in the main class, a weight of one to statements in the first new 

class, and added one for each new class after that. This helps us understand which statements are most important 

in a program as we move from the main class to the subclasses. 

3.2 Type of control structures in classes 

The complexity of a class or program depends on the type of control structure it employs. Consequently, they 

assigned different weights to these structures: sequential statements received a weight of zero, conditional 

control structures like if-else and if-else if conditions were assigned a weight of one, iterative control structures 

such as for, while, and do-while loops received a weight of two, and switch-case statements with 'n' cases were 

given a weight of 'n'. This approach allowed for the assessment and management of complexity within various 

parts of a program based on the control structures used. 

3.3 Nesting level of control structures 

The number of nesting levels in control structures impacts a program's clarity and adds to its complexity. In 

light of this, Chhillar and Bhasin introduced a system for measuring this complexity. They assigned a weight of 

zero to sequential statements, a weight of one to statements at the outermost level of nesting, and a weight of 

two to statements at the next inner level of nesting, and so on. This method offers a way to quantitatively assess 

a program's complexity based on the depth of its control structure nesting. 

3.4 Size of class in terms of token count 

Chhillar and Bhasin thought that when a class or program gets bigger, it also gets more complicated. They 

looked at the size of a class or program as the last thing to consider in their measurement. To figure out how big 

a statement was, they counted things like the operators, operands, methods/functions, and strings used in that 

statement. 

3.5 Concurrent programs - threads 

De Silva devised a method for assessing the significance of threads in concurrent programs. He introduced a 

way to distinguish the size of a typical statement from one that initiates a thread. In the case of statements 

involving thread invocation, he consistently increased the total size of each statement by a constant value of two. 

3.6 Compound conditional statements 

The ICB measure considers compound conditional statements as a factor. To address this, the ICB measure 

assigns a weight of one for each "&&" or "||" operator in a conditional statement. This approach is based on the 

idea that including one "&&" or "||" operator signifies an increase of one in the number of conditions checked by 

a decisional statement. Since the CB measure assigned a weight of one for each decision statement, regardless of 

the number of conditions it had, the authors decided to also add a weight of one for each "&&" or "||" logical 

operator to account for this added complexity. 

3.7 Compound conditional statements 

Initially, the size (S) of each statement within the recursive function is multiplied by the corresponding weight 

(W) assigned to those statements. Subsequently, the resulting values are combined and incorporated into the 

program's final ICB value. 

An equation to represent the overall Improved Cognitive Based complexity (ICB) calculation for the provided 

code. The ICB is calculated by summing up the weighted sums of all executable statements in the code. 

The equation for ICB can be represented as follows, 

 

(1) 
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Where: 

• P is the Improved Cognitive Based complexity. 

• Σ represents the summation symbol, indicating that it sums up the following expression for each 

executable statement. 

• S represents the Executable Statement Count for each statement. 

• Wt represents the total weight assigned to each statement based on factors like inheritance, control 

structure type, nesting level, and size. 

This ICB measure outlines the process of Improved CB (ICB) is an enhanced complexity assessment metric in 

software engineering that goes beyond traditional code complexity evaluation. ICB considers not only 

inheritance, control structures, and statement size but also considers additional factors such as compound 

conditional statements, threads, and recursion. This comprehensive approach provides a more holistic view of 

software complexity, helping developers identify and address critical areas for improvement in code readability 

and maintainability. 

4. Methodology 

The few steps and the process that was followed for the implementation of Code Complexity Calculator are as 

follows: 

To identify Java code in an input area, one can examine it for specific Java language keywords such as "class," 

"public," "private," "void," "import," and "package." Additionally, Java code typically terminates each statement 

with a semicolon, employs curly braces to delineate code blocks, and defines methods using parentheses. The 

presence of these characteristics aids in determining if the input constitutes Java code. 

Methods are located by searching for lines beginning with access modifiers (e.g., public, private) followed by a 

return type or a class/interface name and containing parentheses (). 

Classes are identified by lines starting with access modifiers followed by the class keyword and a class name, as 

well as lines that contain the class keyword followed by a class name, even if they don't start with access 

modifiers like public or private. 

Variable declarations are identified in lines where a variable name is followed by a data type and possibly an 

assignment operator (=) or initialization. 

Threads are identified by searching for classes that extend the Thread class or implement the Runnable interface. 

Thread object declarations usually involve creating instances of these classes using the new keyword. 

Nesting levels are identified by monitoring the opening and closing of control structures like loops (for, while), 

conditional statements (if, else), and code blocks (curly braces {}). A stack data structure is used to count the 

depth of nested structures, with the size of the stack representing the current nesting level. 

Control structures are identified via keywords such as "if," "else," "for," "while," and "switch." Additionally, the 

presence of opening and closing curly braces "{}" is checked to define code blocks. These structures control the 

flow of execution in the code. 

Inheritance levels are identified by checking class declarations to see if they extend or implement other classes 

or interfaces. In Java, the "extends" keyword is used to indicate inheritance from a superclass, and the 

"implements" keyword is used to specify implemented interfaces. This information can help determine the 

inheritance hierarchy within the code. 

Compound conditional statements are detected by searching for occurrences of logical operators such as "&&" 

(logical AND) and "||" (logical OR) within if statements or loops. These operators combine multiple conditions, 

creating compound conditional statements that control program flow based on multiple criteria simultaneously.  
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Recursive statements are located in functions or methods that call themselves within their own definitions. 

Recursive statements are those where a function invokes itself either directly or indirectly, creating a loop of 

function calls until a base case is met to terminate the recursion. 

4.1 Tools and technology 

WindowBuilder is an Eclipse IDE plugin makes it much more convenient to create complex GUIs for Java 

desktop applications by providing a visual interface for designing the application's user interface. One can 

continue to enhance and customize the application by adding logic, event handling, and additional GUI 

components as needed. 

Regex library utilize the regex library in code, import the relevant library. Then, create a `Pattern` object with a 

desired regular expression pattern and compile it. Finally, use the `Matcher` class to apply the pattern to input 

data, allowing for finding, matching, or manipulating specific text patterns within the code. 

JFreeChart library use the JFreeChart library in code, begin by adding the JFreeChart JAR files to the project's 

classpath. Next, import the required classes from the library. Then create a chart using the provided factory 

methods, customize it, and then display it in the GUI application using a ChartPanel or a similar component. 

4.2 System functionality illustration 

The document references a visual representation of the overall system functionalities as "Fig. 1" This figure 

likely provides a visual overview of how these functionalities are integrated into the system architecture, but the 

actual details of this illustration are not provided in the text. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Results and Discussions 

 

Fig.1. System functionality illustration 
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The implementation of the code complexity calculator was successful. Not only it provides the code complexity 

measuring results, but also provides some graphical charts to analyses the result and code elements as well. 

Some of graphs and charts are demonstrated “Fig. 2”, “Fig. 3”, “Fig. 4”, “Fig. 5” and "Fig. 6”. To implement the 

proposed functionalities the above-mentioned methodology was followed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Interface with resulted graphs for the factorials 

 

 

Fig.3. Interface with resulted graphs for the factorials 

 

 

Fig.4. Interface with resulted graphs for the threads 
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The tool was tested against many source codes from a variety of code models and it was evident that the results 

generated by the code complexity calculator are 100% accurate base on used ICB metrics. The sample test cases 

used to evaluate the accuracy and reliability of the code complexity calculator are displayed in “Fig. 7” and 

“Fig. 8”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5. Interface with resulted graphs for the threads 

 

 

Fig.6. Interface with class wise complexity measurers 

 

 

Fig.7. Sample program to demonstrate the calculation if ICB value. 

 

 

 

 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 44  No 4 (2023) 

__________________________________________________________________________________ 

2845 

 

Fig.8. Complexity Calculation of above sample code 

Above results proves the accuracy and the reliability of the code complexity calculator and it is also evident that 

this tool supports all the ICB metrics calculations which are not available in any other tools. Some of the major 

aspects of code complexity calculator are illustrated in the “Fig. 9”. Throughout these major functions, the tool 

provides more accurate results. Mainly this kind of tools are used by the higher management of the software 

engineering industry. So, this can acquire a huge market-share in the context of code complexity measuring 

tools in software engineering industry. 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion 

In conclusion, the Code Analyzer Tool emerges as a pivotal resource in the realm of software development. Its 

systematic approach to code quality assessment, underpinned by a comprehensive array of Improved CB (ICB) 

metrics, provides developers and teams with a robust framework for evaluating and enhancing code quality. 

This tool excels in efficiently identifying intricate areas of code complexity, including size, control structures, 

inheritance, nesting, and more. By illuminating these aspects, it empowers teams to embark on targeted efforts 

to optimize their codebase, ultimately leading to code that is not only easier to maintain but also poised for 

future scalability. Moreover, the tool's ability to render data tables and pie charts fosters clear communication 

among developers and stakeholders, facilitating informed decision-making on code refactoring and structural 

improvements. With a focus on reducing technical debt and improving code quality, the Code Analyzer Tool 

exemplifies modern software development best practices and promises to be an indispensable asset for teams 

committed to delivering robust, maintainable software solution. 

 

 

 

Fig.8. Main functions of tool 
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