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Abstract: -Hearing aids, akin to various mechanical instruments, emit specific auditory signals indicative of
operational health, accurate parameter settings, or maintenance requirements. Analogous to automobile users
discerning vehicle health via auditory cues without formal instruction, such auditory recognition emerges
rapidly. Yet, embodying this auditory discernment within an artificial framework introduces intricate challenges.
The scope of artificial structures capable of pre-emptive defect or maintenance identification through auditory
signals remains expansive. In hearing aids, commonly observed complications encompass inadequate
amplification, acoustic reverberations presenting as echoes, and diminished acoustic integrity leading to
auditory deformities, frequently labelled as Non-linear harmonic distortion. The present study predominantly
concentrates on the pervasive issue of auditory reverberations in hearing aids, often leading to user discomfort.
The primary goal revolves around developing a resilient system harnessing an SVM classifier to detect echoes.
Notably, the outlined architecture has showcased an accuracy metric of 95.4%.
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I. Introduction

Mechanical devices, encompassing combustion engines, pipes transporting gaseous or liquid chemicals, and
drills, may manifest flaws during operation. While a flaw doesn't render a system inoperable, neglect can lead to
system failure. Such flaws arise from wear, part failure, or process outside specified tolerances and conditions.
Ensuring proper settings is crucial, as incorrect configurations might result in malfunctions. System failures
pose risks to safety and the environment, leading to financial implications. This section elucidates faults, their
types, and detection methods in hearing aids.

1. Faults in Hearing Aids:

Faults in hearing aids refer to introducing undesirable audible components resulting from the processed signal's
interaction with an internal non-linear mechanism. If these introduced components remain minor relative to the
overall signal strength, they might not cause interference. However, when these components overshadow the
desired sound, they can detract from the listening experience, rendering sounds annoying or incomprehensible.

2. Types of Faults in Hearing Aids:

Faults can be broadly classified into three categories. Immediate faults lead to an instant system disruption,
causing significant components, like a car's crankshaft, to fail. Gradual faults permit the system to operate, albeit
with accumulating damage until a total system failure. Misconfigured systems fall under a distinct fault
category; they work but influence the system's performance and the wear experienced during operation.
Common faults in hearing aids include inadequate gain, acoustic feedback (echoes), and subpar acoustic quality
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marked by sound distortion, also known as Non-linear harmonic distortion. Addressing these issues requires
effective fault detection and the design of fault-tolerant systems. Figure 1 presents the general block diagram of
a hearing aid.
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Figure 1: General Block Diagram of the Digital Hearing Aid.
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The structure and operation of hearing devices within the external ear canal lead to several challenges and faults.
These issues are outlined below:

« Insufficient Gain: Sound amplification is critical for individuals with pronounced hearing loss. Although
hearing devices do not generate sound, they amplify incoming sounds detected by microphones, a process called
gain. The resulting sound pressure level produced by the hearing device combines the initial incoming sound
with the added gain from the device. These devices adjust the gain applied to incoming sounds across different
frequencies, enhancing frequencies where hearing is impaired and reducing gain where hearing is adequate.
However, excessive amplification can lead to uncomfortably loud or even harmful sound levels.

* Compromised Acoustic Quality and Sound Distortion (Non-linear Harmonic Distortion): Conventional
hearing aids often have limited frequency ranges they can amplify effectively. Most are optimized for the speech
frequency range (500-2000 Hz). However, they might struggle to consistently amplify lower frequencies (as
seen in Meniere disease) or higher frequencies (as in cases of presbyacusis or autotoxicity). This inconsistency
can introduce distortions, especially when transitioning between frequency ranges, leading to phase shifts.

1. Acoustic Feedback: Some acoustic waves produced by the hearing device's speaker reflect off the eardrum
and leak through the space between the machine and the external ear canal wall. These reflected waves re-enter
the microphone, get re-amplified, and produce a high-pitched feedback sound. Devices where the microphone
and speaker are nearby, or those used by individuals with larger mastoid cavities, are especially prone to this
feedback phenomenon.

2. Fault Detection Methods: Techniques for fault detection aim to identify deteriorating operational conditions
or pinpoint specific faults during device operation. These techniques rely on signals produced by the operating
device. Some methods are based on known platform-specific issues. There are two primary strategies for fault
detection:

- The first method leverages known fault signals to identify specific problems. This approach relies on a dataset
of pre-recorded fault signals representing a range of fault conditions and routine operations. The technique
employs classifiers to categorize real-time operational signals based on this pre-established dataset. These
methods excel in identifying specific, known faults, mainly if these faults manifest in consistent patterns. They
are often robust against external noise because they focus on detecting established fault patterns. However, they
have limitations, such as their inability to detect new or previously unknown faults. Acquiring a comprehensive
set of fault signals can also be challenging, given the unpredictable nature of faults.

- The second method centers on identifying anomalies in signals that wouldn't appear during regular operation.
The difference between a standard operational signal and an anomalous one forms the basis for this
categorization. This versatile technique can adapt to various scenarios without requiring prior data collection. It
can also recognize previously undetected or new faults. Notably, it excels in identifying ambiguous issues, such
as squeaking sounds [9]. However, this method comes with its set of challenges. It must account for the variable
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signals machines produce throughout the day or during different operational phases. Additionally, this method
can be more susceptible to noise interference from external sources.

Il. Literature Survey

Understanding signal-based defect detection methodologies is crucial for informed research. A comprehensive
literature review offers insights into this domain's current state of the art.

- Kurunakar et al. [01]: This research delved into detecting defects in internal combustion engines using a
discrete wavelet transform (DWT) at level five. The DWT's analysis window size is tailored to the frequency
component, facilitating multi-resolution signal analysis. An artificial neural network (ANN) of unspecified
configuration was used for signal classification. The team tested a Hyundai 120 combustion engine for potential
defects, targeting issues like timing belts and fuel malfunctions. Although the study was executed on a Windows
Mobile platform, the results did not prove the system's accuracy. However, the time analysis on this platform
took 1 minute and 35 seconds.

- Maniak et al. [02]: The research revolved around using sound analysis for quality assurance in the production
line of sound signaling devices. By analyzing the signal, 26 Mel frequency cepstral coefficients were derived.
These coefficients were inputs for an ANN with 50 hidden neurons, trained on 40 faulty and 160 non-faulty
samples. Their methodology achieved an impressive accuracy rate of up to 99.7%.

- Hayashi et al. [03]: The team targeted the detection of electromagnetic valve defects using differences in the
power spectrum. A feature vector, 240 units in length, was crafted using frequencies spanning from 55 Hz to
1250 Hz at 5-Hz intervals. An ANN comprising 30 hidden neurons undertook the task of classifying faults.
Although the network was trained on standard valve sounds and noises emanating from a 2mm diameter hole or
a 5mm crack, the research did not offer explicit numerical results.

- Benko et al. [04]: This study honed in on the sound module of a system and adopted a multi-domain approach
to defect identification. The defect detection system, employed for quality control of vacuum cleaner motors,
incorporated various signals - sound, vibration, rotational speed, voltage, current, and brush voltage. Post-
bandpass filtering the signal within a frequency range of 2.5 to 3.5 kHz, a Hilbert transform was applied. By
altering the phase of all frequency components by pi/2 rad, this transform enables the computation of
amplitudes and instantaneous frequencies. Subsequently, the signal was filtered to extract four frequency
components, which were then integrated into a single feature using RMS. Another feature was the utilization of
two weighted histograms of the signal to identify intermittent brushing noises. The two types of faults studied
were rubbing sounds and periodic brushing, and the two features were used for their detection. However, the
research didn't extend to presenting classification results beyond visualization.

In conclusion, these studies showcase the diversity and depth of approaches available for signal-based defect
detection, each with strengths, methodologies, and challenges.

I111. Methodology

In this section, a structured methodology for identifying faults in hearing aids is presented. This methodology
relies on sound signals generated by testing apparatuses. The illustrated process encompasses six pivotal stages,
as delineated in Figure 2:

1. Data Acquisition: This stage involves capturing the auditory output of the hearing aid using high-sensitivity
Sensors.

2. Pre-processing: The acquired sound signal undergoes denoising procedures to eliminate extraneous signals,
ensuring the primary speech signal remains undistorted.

3. Feature Extraction: Essential and relevant features are extracted from the pre-processed signal to aid the
subsequent classification process.
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4. Fault Diagnosis with SVM Classifier: A Support Vector Machine (SVM) classifier is trained using the
extracted features to identify and diagnose potential faults within the hearing aid proficiently.

3.1 Sound Acquisition

Before a computer-based system can effectively extract salient features from a sound signal, the signal must be
accurately measured, converted into a digital format, and subjected to initial processing. For the measurement
phase, a directional microphone serves as the primary instrument. The analog sound signal is then transformed
into its digital counterpart using an analog-to-digital converter. This results in the sound being represented in a
discrete sample format, making it amenable to digital processing.

An integral parameter in this conversion process is the sampling frequency or rate. This denotes the number of
samples procured per unit time. Each sample's amplitude is quantified as a floating-point value or an integer.
With the sound signal now in a discrete format, it becomes feasible for digital devices to process and analyze it
further.
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Figure 2: Architecture of Proposed System
3.2 Pre-Processing

In the pre-processing phase, the sound signal undergoes modifications to eradicate external disturbances and
noise, ensuring the retention of the primary auditory components.

* Long-term Smoothed Modulation Frequency-based Noise Reduction:

This method segregates the noisy signal into multiple subbands, subsequently applying long-term smoothed
attenuation to the subbands exhibiting the lowest average Signal-to-Noise Ratio (SNR). This noise reduction
mechanism, a staple in contemporary digital hearing aids, diminishes frequency components with a notably low
SNR. Through modulation frequency analysis, the method discerns between subbands encompassing desired
signal components and those primarily filled with noise.

The underlying processing algorithm leverages a spectral subtraction technique akin to the mechanisms found in
modern hearing aids. The noise level is estimated by harnessing the input from a singular microphone and
considering the long-term stimulus average. Components of the input signal that surpass this long-term average
are identified as the primary signal.
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Various frequency bands are analyzed to calculate the noise's average power level, and based on this, the
attenuation rate is determined. Concurrently, the power level of the composite input signal (which amalgamates
both the primary signal and the noise) is estimated for analogous frequency bands. By juxtaposing this level
with the average level of a noise-only stimulus, an instantaneous running SNR is computed for each frequency
channel. This SNR then aids in ascertaining the running attenuation pertinent to each channel. The gain function
for this mechanism can be depicted by Equation 1.

—1.55SNR +2091; 9dB <SNR < 18dB
Attenuation =4 —0.78 SNR + 14; —2dB < SNR < 9dB (D
24; SNR < —2dB

The algorithm's attenuation was capped at a maximum of 24 dB, employing the highest noise reduction level
possible. This ensures that while the noise is significantly reduced, the primary auditory components of the
signal are not unduly compromised.

Figure 4 provides a comparative representation of time-domain signals before and after the de-noising
procedure. This visualization underscores the efficacy of the pre-processing technique, clearly delineating the
reduction of noise while preserving the integral components of the auditory signal. Such visual comparisons are
instrumental in validating the effectiveness of noise reduction methodologies, demonstrating their utility in real-
world applications, especially in the context of hearing aids.
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Figure 4. Comparison of time-domain signals before and after signal de-noising (a) Original signal, (b)
Noise reduction signal

3.3 Frequency Domain Conversion and Feature Extraction

To glean frequency-associated attributes, the windowed signal transforms a frequency domain representation. A
widely recognized technique for procuring the frequency spectrum from a discrete-time signal is the Fast
Fourier Transform (FFT). However, executing FFT can be computationally intensive and demanding in
embedded systems.

Given the challenges associated with FFT in such contexts, an alternative approach is employed: the filter bank
method. This technique facilitates the extraction of the frequency spectrum more efficiently and is suitable for
embedded systems. Figure 5 provides a graphical representation of the filters used in the filter bank, illustrating
the frequency ranges each filter targets and how they work in tandem to provide a comprehensive frequency
domain representation of the signal.
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Figure 5: Filter Bank
3.4 Filter Bank Configuration

The filter bank employed in this methodology is composed of 256 bandpass filters. These filters are
systematically distributed across 100 Hz to 16 kHz. Each filter within this assembly is characterized as a 4-stage
Infinite Impulse Response (IIR) elliptical filter, distinguished by its narrow 4th order.

To ensure efficiency and cost-effectiveness, the filters have been pre-designed and optimized for signals
exhibiting a sampling rate of 48 kHz. This preemptive calculation eliminates the need for real-time filter design
during signal processing, enhancing the speed and reducing computational overhead.

For feature extraction, each band's root mean square (RMS) is computed once the input signal has been
processed through the bandpass filters. This yields the frequency spectrum representation for every segment of
the signal. The RMS values serve as a reliable measure of the signal's magnitude within each frequency band,
enabling a detailed spectral analysis and facilitating subsequent stages of fault detection.

Time-domain and frequency-domain representations are considered to comprehensively analyze a speech signal,
which is replete with information and potential faults. The time domain offers insights into how the signal varies
with time, while the frequency domain sheds light on the signal's spectral composition.

In the context of the time domain, specific features can be extracted to provide valuable information about the
nature and characteristics of the signal. These features can be instrumental in detecting and diagnosing faults or
anomalies within the signal.

1. Short-time energy is a low-level temporal feature of a sound explained in equation (2) for continuous
signals, where x(t) is the signal's function.

E= j Ix ()2 )

2. Root mean squareamplitude A signal’s amplitude has both +ve and -ve values; therefore, utilizing the
average of the instantaneous samples to find the signal is problematic using the equation below.

Erms =

3. Amplitude variance is found by describing the difference in a group of values as differences. The variance
for the discrete set is obtained in the equation.
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4. Zero crossing rate is explained as the total times that an amplitude amount of a signal switches signs. Zero

crossing rate can be expressed using the below equation.

N-1
1
zer == ) llsign(x(e) = signx(c = D) (5)
t=2
1,ifx(i)>0
sign(x(k)) =| 0,ifx(V) =0 (6)
—1,ifx(i) <0

Time-domain and frequency-domain features can comprehensively understand a speech signal and its
anomalies.

The time-domain features often capture the temporal characteristics of the signal, such as its amplitude, energy,
and duration. For instance, fault sounds or anomalies might manifest as sudden spikes, dips in amplitude, or
unexpected patterns over time.

On the other hand, frequency-domain features focus on the signal's spectral content, revealing insights about
energy distribution across different frequency bands. Specific faults or anomalies might alter the shape or
distribution of the frequency spectrum in distinct ways.

1. A spectral peak is a scale that finds the frequency range with the maximum energy value. The spectral peak
can be calculated efficiently by measuring the index of the maximum value in the spectrum.
2. The spectral centroid measures the center of mass of the spectrum. The spectral centroid is expressed as
(4.11), where x (1) is the weighted value of the frequency band.
N N
fcentroid = # (7)
i=1 x(@)
3. Spectral kurtosis calculates how relatively the spectrum is the same as the Gaussian distribution.
Therefore, it finds the peakedness of the spectra.
230, (x| = )t

v(i) =
fmax O-)?’
4.  Spectral spread calculates how centered the spectra are surrounding the spectral centroid.

Vepread = \/Z?’=1(i - fc;ntroid' ()2 ]x (D12
islx@I?
To discover abnormalities in frequency spectra that do not contain enough energy to modify the entire
distribution, we measure the spectral peak, the frequency with the most energy. To identify substantial changes
in a frequency distribution, we use the spectral centroid to quantify the spectrum's center of mass. Spectral
kurtosis spread and flatness, on the other hand, define the overall form of the spectrum. The characteristics are
normalized to a range of zero to one. Normalization guarantees that all features are given equal weight.

3 (8)

€

3.3 Fault Detection Model
Acoustic Feedback in Hearing Aids
Acoustic feedback is a predominant issue in hearing devices and remains a primary factor contributing to
dissatisfaction among hearing aid users.

Acoustic Feedback Mechanism: As depicted in Figure 6, acoustic feedback occurs due to the unintended
acoustic coupling between the loudspeaker (or speaker) and the hearing aid microphone. This undesired
coupling arises primarily from acoustic leakages. Specifically, when sound emitted by the loudspeaker leaks
back to the device's microphone, it can be inadvertently re-amplified.
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Consequences: Such feedback disrupts and diminishes the incoming speech signals intended for the hearing aid
user. When re-amplified multiple times, this looping of the sound between the speaker and the microphone
manifests as a highly unpleasant and often sharp “whistling” or “screeching” noise. This disruptive sound
phenomenon is commonly called the "howling effect.”

The howling effect not only diminishes the quality of sound perceived by the user but can also lead to
discomfort and, in some cases, potentially harm the user's residual hearing. Addressing acoustic feedback is,
therefore, paramount in ensuring the optimal performance of hearing aids and enhancing user satisfaction and
comfort.

Loudspeaker

S

\

Forward Forward |\ Feedback

Path Path Gain | Signal
4 /

/// Desired
Input Signal

Microphone
Figure 6: Acoustic coupling between Loudspeaker and Microphone of a Hearing aid device.
Acoustic Feedback Challenges and Solutions in Hearing Aids

The repercussions of acoustic feedback, particularly the howling sound (HS), have profoundly affected the user
experience and the technical design of hearing aids. The presence of HS often restricts the application of higher
gain values, which might be essential for certain hearing aid users.

As cited from references [4], statistical insights indicate that 10% to 15% of in-the-ear hearing aids are returned
to manufacturers due to feedback-related complications within the initial 90 days post-production. This not only
inflates the overall cost of hearing aids but also results in significant inconvenience and dissatisfaction among
users.

Despite the advancements in hearing aid technology, acoustic feedback remains a complex and pressing
research area. The challenge lies in accelerating the solution's convergence rate while ensuring the system'’s
reliability remains uncompromised. The central problem mandates an economical solution that preserves the
quality and intelligibility of speech.

Historically, several strategies have been formulated to mitigate the acoustic feedback dilemma. These strategies
span across various categories:

1. Phase Modulation Methods: These techniques involve altering the phase of the feedback signal to suppress
its effects.

2. Gain Reduction Methods: These methods dynamically adjust the hearing aid's gain to minimize feedback.

3. Spatial Filtering Methods: These techniques spatially filter out the feedback sound by leveraging multiple
microphones.

4. Room Modelling Methods: These approaches model the acoustic environment and predict potential
feedback paths, allowing for proactive feedback suppression.

In the context of this paper, the focus is primarily on Filtering Methods to counteract the detrimental effects of
acoustic feedback. One inherent challenge in handling feedback in hearing aids is the correlation between the
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feedback signal and the desired speech signal. This correlation stems from the closed-loop configuration
prevalent in these devices.

The filter-based approach in this discourse employs a Finite Impulse Response (FIR) filter to approximate and
process the acoustic feedback path. Placing the estimated FIR filter parallel to the actual feedback path negates
or " cancels" the feedback, thus restoring the desired speech signal's clarity. This mechanism of feedback
cancellation is visualized in Figure 7.

Loudspeaker
Q) —
Forward N Forward Feedback \ Feedback
Path Path Gain _|—Canceller ‘\ Signal
4 [ /
| /
%—( v + /// Desired
\ Input Signal

Microphone
Figure 7: Filter-based Method for feedback Cancellation.

3.3.1  Fault Identification using SVM
The Support Vector Machine (SVM) is renowned for its ability to discern patterns in complex datasets,
making it an ideal choice for tasks such as fault identification in hearing aids.

Basics of SVM:
SVM operates on the principle of determining the optimal hyperplane that best differentiates between classes in
a dataset. This optimal separation is achieved by maximizing the margin between the classes. The architecture

and phases of the SVM Classifier, as depicted in Figure 8, underscores its structured approach to learning and
classification.

Training Phase
Training o Arer Vectors for Classifier
Data » SVM Training
A
Kernel Type R
and Function ”
\ 4 A\ 4
> Clilgi\:ier —» Desired Ouput
Testing Data >
Testing Phase

Figure 8: Architecture of SVM Classifier.
Critical Components of SVM:

1. Maximal Margin: Reducing the VC (Vapnik—Chervonenkis) dimension minimizes the SVM's upper bound,
enhancing its generalization capability.
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2. Kernel Trick: This strategy allows the SVM to transform the problem's dimensionality, making the
estimation function more adaptive to the data. The empirical error risk diminishes by elevating the issue from a
lower to a higher dimension.

3. Sparseness: Fewer support vectors (SVs) enhance the system's generalization capability. The sparsity of SVs
also ensures computational efficiency since the feature set comprises these SVs.

4. Convex Optimization: The optimal solution of SVM is derived from a quadratic optimization model. The
convex nature of this formulation ensures a unique and global solution.

Sound Signal Acquisition

Training Signal Tes““i Signal
Pre-Processing | Pre-Processing
) |
E ' ?
'E v ) 4 @
F | Feature Extraction | Feature Extraction @&
v §
i A
( Feature ( > 3 S -
Database | » Classification
| / o
—————————————————————————————————— ~__
\\
N | Fault
orma Detection

Figure 9: Flowchart detailing the training and testing procedure of SVM.
Fault Detection Process:

The features extracted from the speech signal mirror the operational state of the hearing aid. The SVM classifier
is trained using these features to distinguish between standard and faulty hearing aids.

The SVM's decision parameter, pivotal in this differentiation process, is optimized based on the training data.
Once trained, the classifier assesses new data: the hearing aid is deemed functional if the decision parameter
falls within a predetermined boundary. Conversely, a fault is likely present if it lies outside this boundary.

1V. Experimental Results And Analysis

In this section, the hardware device in focus receives a detailed overview, followed by an elucidation of the
implementation specifics. Hearing devices undergo classification based on shape and functionality into behind-
the-ear, receiver-in-canal, in-the-ear, in-the-canal, completely-in-canal, and invisible-in-canal—figure 10
displays images representing various formats of available hearing aid devices. For this research, the experiment
utilizes Shamanics Axon K 80 ITE and Shamanic Hearing Aid AXON V 185 Ear Machines, with sample
images presented in Figure 11.

In-the-ear hearing aids are designed to fit entirely within the outer ear and address a range from minimal to
profound hearing loss. Two formats or sizes exist: one encompassing the outer ear (entire shell) and another
covering only the lower portion of the outer ear (half shell).

2586



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 4 (2023)

(d)

Figure 10: (a) behind-the-ear (BTE) (b) invisible-in-canal (11C) (c) in-the-canal (ITC) (d) in-the-ear (ITE)
(e) receiver-in-canal (RIC) (f) completely-in-canal (CIC)

Figure 11: In-the-ear hearing aids used in the proposed Work

Signal data procured from the hearing aid device undergoes initial preprocessing before signal classification.
Noise elimination occurs within this signal data. Subsequently, the SVM classifier aids in determining the
categorization of the input signal, distinguishing between non-faulty and faulty classifications.

4.1 Dataset description

A database formed from speech signals sampled by 10 individuals at a rate of 16 kHz, translating to 1600
samples per second. Each of these samples boasts a resolution of 16 bits. Near-end and far-end speakers were
selected independently, culminating in aggregating 50 speech signal files. To achieve a total of 50 sets, three
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distinct sound sources, specifically far-end speaker, near-end speech, and noise, were generated at random
positions with distances of 1.5 m, 1 m, and 2 m from the microphone array. Thirty of these sets served the
learning process, with the remaining twenty designated for testing.

For near-end speech, signal-to-echo ratio levels, encompassing [-6 dB, -3 dB, 0 dB, 3 dB, 6 dB], were randomly
selected and combined with the adjusted acoustic echo sign. Figure 12 illustrates a speech representation plot
derived from the database's speech signal.
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Figure 12: Sample Input Speech Signal (a) Speech Signal (b) Speech Signal after Acoustic Echo.

The results derived from the system's implementation receive a step-by-step elucidation. Figure 13 showcases a
sample speech signal subjected to the proposed methodology. Initially, the pre-processing technique,
represented in Figure 14, depicts the example speech signal before applying the pre-processing measure.
Following this, Figure 15 reveals the outcome of the speech signal post-denoising.
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Figure 13: Sample of a Speech Signal
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Figure 14: (a) Input Speech Signal (b) Pre-Processed Speech Signal

In Figure 14 b, the speech signal undergoes pre-processing and background noise is segregated from the speech
signal data. The subsequent feature extraction from the time domain is illustrated as follows: Figure 15
represents the extracted ZCR, STE, spectrogram, and bandwidth from the pre-processed speech signal, achieved
by employing the proposed approach.
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Figure 15: Results of Feature Extraction (a) Zero Crossing Rate (b) Short-Time Energy (c) Bandwidth (d)

Spectrogram.

Following the feature extraction process, the SVM characterization undergoes an update. This SVM
computation works to segregate the hyperplane based on designated constraints. Within this context, the faulty
speech signal receives a label of 0, while the non-faulty speech signal is designated with a label of 1. Figure 16
presents the hyperplane plan diagram after the finalization of the proposed descriptive analysis.
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Figure 16: Proposed SVM Hyperplane formation graph.

4.2 Performance Analysis

Several metrics, such as accuracy, precision, sensitivity, and specificity, were employed to evaluate the
presented model's performance. Table 1 outlines the results. These results highlight the peak value of
quantitative metrics up to a specific epoch number. Subsequent illustrations compare Accuracy (Figure 17),
Precision (Figure 18), Recall (Figure 19), and F-measure (Figure 20) between the proposed SVM classifier and
BPNN classifiers.
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Figure 17: A Graph of Accuracy with Comparison Figure 18: A Precision graph with a comparison
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Table 1. Comparison of different Classification Algorithms

Parameter BPNN Classifier SVM Classifier
Accuracy 78.106 90.023
Recall 82.030 94.064
Precision 75.927 87.038
F-Measure 78.847 90.386
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Figure 20: A Graph of F-measure with comparison

Figure 21 illustrates the model's convergence speed by plotting training and testing efficiency against losses

over epochs.

The confusion matrix, sometimes called the error matrix, provides a visual representation of the performance of
a machine learning or statistical classification algorithm. In this matrix, rows symbolize predicted ground truths,
while columns indicate actual ground truths. Figure 18 depicts the recognition rate graph for the SVM
Classifier, and Figure 13 presents the confusion matrix for the discussed model, focusing on the two classes.
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Figure 21: ROC for SVM Classification
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V. Conclusion

A preferable scenario involves predicting machine malfunctions and initiating preventative maintenance to
ensure machines operate safely and deliver optimal performance. The suggested fault detection approach
incorporates both time and frequency domains. The filter bank comprises 256 bandpass filters from 100 Hz to
16 kHz. Each filter constitutes a 4-stage Infinite Impulse Response (IIR) elliptical filter with an expansive 4th
order. These filters were pre-computed for signals at a 48 kHz sampling rate to enhance efficiency and cost-
effectiveness. After bandpass filtering, the root mean square for each band is computed, producing the
frequency band for each segment in the feature vector. This vector characterizes sound in diverse manners and
proves instrumental in identifying various anomalies. An experimental evaluation of the proposed strategy was
conducted, and based on the outcomes, the method demonstrates success in pinpointing defects in hearing aid
devices.
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