
Some Results On Total Onto Minus Edge Dominating Functions In Graphs

[1] D. Jency Slezer, [2] Dr. Y. S. Irine Sheela

[1] Reg No: 20213162092005, Research Scholar, Department of Mathematics, Scott Christian College (Autonomous), Nagercoil-629 003, Kanyakumari, Tamilnadu, India. (Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamilnadu, India).

Associate Professor, Department of Mathematics, Scott Christian College (Autonomous), Nagercoil-629 003, Kanyakumari, Tamilnadu, India. (Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamilnadu, India).

Email: [1]jencyslezer@gamil.com, [2] irinesheela@gmail.com

Abstract: Let G = (V, E) be a graph. The total onto minus edge dominating function is a function $f: E \to \{-1, 0, 1\}$ such that f is onto and $f(N(e)) \ge 1$ for all $e \in E(G)$. The total onto minus edge domination number of a graph G is a minimum weight of a set of all total onto minus edge dominating functions of G and it is denoted by $\gamma'_{tom}(G)$.

In this paper we discuss about the total onto minus edge domination number for some graphs: Star graph, Bistar graph, Friendship graph and Flower graph.

Keywords and Phrases: Edge dominating function, onto minus edge dominating function, total onto minus edge dominating function, Star graph, Bistar graph, Friendship graph and Flower graph. **Subject Classification: 05C69**

1. Introduction and Preliminaries

The minus dominating function was introduced by Dunbar et al [3]. Further the concept was extended to define other edge parameter like minus edge domination number which was introduced by B. Xu and S. Zhou [5]. Let G be a simple graph with vertex set V(G) and edge set E(G). The closed neighborhood $N_G[e]$ of an edge e in a graph G is the set consisting of e and all the edges adjacent with e. A function f: $E \to \{0, 1\}$ is called an edge dominating function of G if $f(N[e]) \ge 1$ for every $e \in E(G)$. A function f: $E \to \{-1, 0, 1\}$ is called a minus edge dominating function of G if $f(N[e]) \ge 1$ for every $e \in E(G)$. The minus edge domination number for a graph G is $\gamma'_m(G) = \min \{ w(f) : f \text{ is minus edge dominating function of } G \} [4].$ We denote f(N[e]) by f[e]. S. Jerlin Mary and Y. S Irine Sheela were introduced the concept of onto minus dominating function [6]. A function $f: A \to B$ is said to be onto if every element in B has a preimage in A. The onto minus edge dominating function is a function $f: E \to \{-1, 0, 1\}$ such that f is onto and $f(N[e]) \ge 1$ for every $e \in E(G)$. The onto minus edge domination number of a graph G denoted by $\gamma'_{om}(G)$ is the minimum weight of a set of all onto minus edge dominating functions of G. That is $\gamma'_{om}(G) = min\{w(f): f \text{ is onto minus edge dominating function of } G\}$. The open neighborhood $N_G(e)$ of an edge e in a graph G is the set of all the edges adjacent to e. The total onto minus edge dominating function $f: E \to \{-1, 0, 1\}$ such that f is onto and $f(N(e)) \ge 1$ for all $e \in E(G)$. The total onto minus edge domination number of a graph G is a minimum weight of a set of all total onto minus edge dominating functions of G and it is denoted by $\gamma'_{tom}(G)$.

[1] The complete bipartite graph $K_{1,n}$ is called a *star*. [1] The graph obtained from $K_{1,m}$ and $K_{1,n}$ by joining their centers with an edge is called a *bistar* and it is denoted by B(m,n). [7] A *friendship graph* F_n is a graph obtained by taking n copies of the cycle C_3 with a common vertex. [7] A *flower*

ISSN: 1001-4055 Vol. 44 No. 4 (2023)

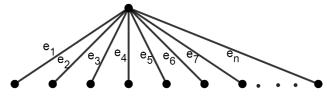
graph Fl_n is a graph obtained from a Helm H_n on 2n+1 vertices by joining each pendent vertex of the Helm to the central vertex.

2. Main Results

Theorem 2.1

For
$$n \ge 5$$
, $\gamma'_{tom}(K_{1,n}) = 2$.

Proof: Let $K_{1,n}$ be the star graph.. Let $e_1, e_2, e_3, \ldots, e_n$ be the edges of $K_{1,n}$.



Define a function f: $E \rightarrow \{-1, 0, 1\}$ by

$$f(e_i) = \begin{cases} -1 & for \ i = 1\\ 1 & for \ i = 2, 3, 4\\ 0 & for \ 5 \le i \le n \end{cases}$$

Here $f(N(e_1)) = 3$

For $2 \le i \le 4$, $f(N(e_i)) = 1$

For $5 \le i \le n$, $f(N(e_i)) = 2$

Thus f is total onto minus edge dominating function of $K_{1,n}$.

Also, the weight of the function f is

$$f(E) = (1)(-1) + (3)(1) + (n-1)(0)$$

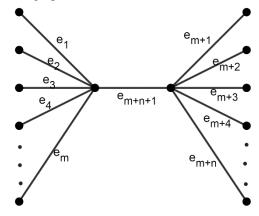
= 2

Hence for $n \ge 5$, $\gamma'_{tom}(K_{1,n}) = 2$.

Theorem 2.2

For $m \ge 3$ and $n \ge l$, $\gamma'_{tom}(B(m, n)) = 2$.

Proof: Let B(m,n) be the bistar graph with m+n+2 vertices and m+n+1 edges.



Let $e_1, e_2, e_3, \ldots, e_{m+n+1}$ be the edges of B(m,n).

Define a function f: $E \rightarrow \{-1, 0, 1\}$ by

$$f(e_i) = \begin{cases} -1 & \text{for } i = 1\\ 1 & \text{for } i = 2,3, m + n + 1\\ 0, & \text{otherwise} \end{cases}$$

Then $f(N(e_1)) = 3$, $f(N(e_2)) = f(N(e_3)) = 1$

For $4 \le i \le m$, $f(N(e_i)) = 2$

For $m+1 \le i \le m+n+1$, $f(N(e_i)) = 1$

Thus f is an onto minus edge dominating function of B(m,n).

Also, the weight of the function f is

$$f(E) = 1(-1) + 3(1) + [m+n+1-4](0)$$

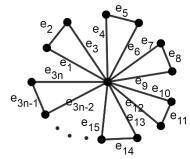
= 2

Hence for $m \ge 3$ and $n \ge 1$, $\gamma'_{tom}(B(m, n)) = 2$.

Theorem 2.3

For $n \geq 3$, $\gamma'_{tom}(F_n) = 0$.

Proof: Let F_n be the friendship graph. Let $e_1, e_2, e_3, \ldots, e_{3n}$ be the edges of F_n .



Define a function f: $E \rightarrow \{-1, 0, 1\}$ by

$$f(e_i) = \begin{cases} -1 & \text{if } i \equiv 2 \pmod{3} \\ 1 & \text{if } i \equiv 0 \pmod{3} \\ 0 & \text{if } i \equiv 1 \pmod{3} \end{cases}$$

Then

$$f(N(e_i)) = \begin{cases} n-1 & \text{if } i \equiv 1 \pmod{3} \\ 1 & \text{if } i \equiv 2 \pmod{3} \\ n-2 & \text{if } i \equiv 0 \pmod{3} \end{cases}$$

Thus f is an onto minus edge dominating function of F_n .

Also, the weight of the function f is

$$f(E) = (n)(-1) + (n)(1) + (n)(0)$$

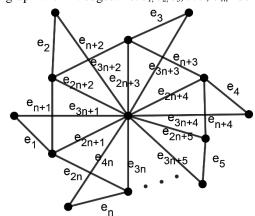
= -n + n + 0
= 0

For $n \ge 3$, $\gamma'_{tom}(F_n) = 0$.

Theorem 2.4

For
$$n \ge 3$$
, $\gamma'_{tom}(Fl_n) = \left[\frac{n}{2}\right]$.

Proof: Let Fl_n be the flower graph with 4n edges. Let $e_1, e_2, e_3, \ldots, e_{4n}$ be the edges of Fl_n .



Define a function f: $E \rightarrow \{-1, 0, 1\}$ by

$$f(e_i) = \begin{cases} -1 & \text{if } 1 \le i \le n \\ 1 & \text{if } n+1 \le i \le 2n \\ 0 & \text{if } 3n+1 \le i \le 4n \end{cases}$$

For $2n + 1 \le i \le 3n$,

Case (i): When n is odd

$$f(e_i) = \begin{cases} 0 & \text{if } i \text{ is odd except } i = 2n+1\\ 1 & \text{if } i \text{ is even and } i = 2n+1 \end{cases}$$

Case (ii): When n is even

$$f(e_i) = \begin{cases} 0 & \text{if } i \text{ is odd} \\ 1 & \text{if } i \text{ is even} \end{cases}$$

Then for i = 1,

$$f(N(e_1)) = \begin{cases} 3 & \text{if } n \text{ is odd} \\ 2 & \text{if } n \text{ is even} \end{cases}$$

For $2 \le i \le n$,

$$f(N(e_i)) = \begin{cases} 2 & \text{if } i \text{ is odd} \\ 3 & \text{if } i \text{ is even} \end{cases}$$

For i = n+1,

$$f(N(e_{n+1})) = \begin{cases} 2 & \text{if } n \text{ is odd} \\ 1 & \text{if } n \text{ is even} \end{cases}$$

For $n+2 \le i \le 2n$,

$$f(N(e_i)) = 1$$

For $2n+2 \le i \le 3 n$,

$$f(N(e_i)) = \begin{cases} \left\lceil \frac{n}{2} \right\rceil & \text{if } i \text{ is even} \\ \left\lceil \frac{n}{2} \right\rceil + 1 & \text{if } i \text{ is odd} \end{cases}$$

For i = 2n+1,

$$f(N(e_{2n+1})) = \begin{cases} \left\lceil \frac{n}{2} \right\rceil & \text{if } n \text{ is odd} \\ \left\lceil \frac{n}{2} \right\rceil + 1 & \text{if } n \text{ is even} \end{cases}$$

For $3n+1 \le i \le 4n$,

$$f(N(e_i)) = \begin{cases} \left\lfloor \frac{n}{2} \right\rfloor & \text{if } n \text{ is odd} \\ \frac{n}{2} - 1 & \text{if } n \text{ is even} \end{cases}$$

Thus f is an onto minus edge dominating function of Fl_n . Also, the weight of the function f is

$$f(E) = (n)(-1) + (n + \left\lceil \frac{n}{2} \right\rceil)(1) + (2n - \left\lceil \frac{n}{2} \right\rceil)(0)$$

$$= -n + n + \left\lceil \frac{n}{2} \right\rceil$$

$$= \left\lceil \frac{n}{2} \right\rceil$$

Hence, For $n \ge 3$, $\gamma'_{tom}(Fl_n) = \left\lceil \frac{n}{2} \right\rceil$.

ISSN: 1001-4055 Vol. 44 No. 4 (2023)

References

- [1] F. Harary, Graph Theory, Reading mass, 1969.
- [2] Teresa W. Haynes, S. T. Hedetniemi and Peter J. Slater Fundamentals of domination in Graphs, Marcel Dekker, 1998.
- [3] Jean Dunbar, Stephen Hedetniemi, Michael A. Henning, Alice McRae, Minus domination in graphs. Discrete Math 199(1996), 35 47.
- [4] A note on the minus edge domination number in graphs S.M. Sheskholeslami. Ars Combinatoria July 2013.
- [5] B. Xu and S. Zhou, On minus edge domination in Graphs, J. Jiangxi Normal University, 1(2007), 21-24 (In Chinese).
- [6] Characterizations of onto minus dominating function in graphs, S. Jerlin Mary and Y. S Irine Sheela, The International Journal of analytical and experimental model analysis.
- [7] Gallian, J. A. Dynamic Survey DS6: Graph Labeling, Electronic J. Combinatorics, DS6, 1-58, 2007.