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1 Introduction:

In the year 1965, Zadeh [8] introduced Fuzzy sets(FS) to model uncertainty problems. It forms
the foundation for the fuzzy matrix theory . In 1977, Thomason introduced the concept of Fuzzy
matrix(FM) as an extension of Boolean matrix and In the year 1980, Kim and Roush developed
the theory for fuzzy matrices. The concept of Intuitionistic fuzzy set(IFS) was later formulated by
Atanassov[1] 1983 which includes both membership and non-membership functions. Following this, Pal
et al.[5] advanced the field 2002 by introducing the concept of an IFM. The use of IFMs has been widely
investigated in several research contexts. Depending on additive and multiplicative operatoins Pal
presented algebraic operations of an IFMs. Boobalan and Sriram investigated the arithmetic Operations
of IFMs. Later on Ramakrishnan and Sriram[7] presented the algebraic operations on IFMs and also
studied scalar multiplication and exponentiation operation based on these operations.

In this paper, we studied the properties of algebraic operations on IFM, such as associative,
distributive, etc. Also proved some other results on IFM. Furthermore, related results concerning
scalar multiplication and exponentiation operations were developed.

2 Preliminaries:

This section presents key definitions that form the foundation for the analysis and discussion in this
paper.
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Definition 2.1. [7] Let Zifm = (〈ζαβ, ζ
′

αβ〉) and Pifm = (〈ραβ, ρ
′

αβ〉) denote two IFM of dimension
m× n then,

(i) Zifm ⊕Q Pifm = (〈ζαβ + ραβ − ζαβραβ, ζ
′

αβ + ρ
′

αβ − ζ
′

αβρ
′

αβ − ζαβρ
′

αβ − ζ
′

αβραβ〉)

(ii) Zifm ⊙Q Pifm = 〈ζαβ + ραβ − ζαβραβ − ζαβρ
′

αβ − ζ
′

αβραβ〉), ζ
′

αβ + ρ
′

αβ − ζ
′

αβρ
′

αβ

The equations are restated below in their corresponding form,

(i) Zifm ⊕Q Pifm = (〈1− (1− ζαβ)(1− ραβ), (1− ζαβ)(1− ραβ)− (1− (ζαβ + ζ
′

αβ))(1− (ραβ + ρ
′

αβ))〉)

(ii) Zifm⊙QPifm = 〈(1− ζ
′

αβ)(1−ραβ
′

)− (1− (ζαβ + ζ
′

αβ))(1− (ραβ +ρ
′

αβ)), 1− (1− ζ
′

αβ)(1−ραβ
′

)〉)

Where ζαβ be an IFM of αth row and βth column.

Definition 2.2. [7] Let Zifm = (〈ζαβ, ζ
′

αβ〉) be an IFM of dimension m × n then, the scalar and
exponentiation operations of Zifm are defined for any positive integer n > 0 ,

(i) nZifm = (〈1− (1− ζαβ)
n, (1− ζαβ)

n − (1− (ζαβ + ζ
′

αβ))
n〉)

(ii) Zn
ifm = (〈(1− ζ

′

αβ)
n − (1− (ζαβ + ζ

′

αβ))
n, 1− (1− ζ

′

αβ)
n〉)

3 Main Results:

In this section, we prove properties of algebraic operations of IFMs.

Theorem 3.1. LetZifm = (〈ζαβ, ζ
′

αβ〉) ,Pifm = (〈ραβ, ρ
′

αβ〉) and Nifm = (〈ηαβ, η
′

αβ〉) be three IFM in
Umn then,

(i) Zifm ⊕Q (Pifm ⊕Q Nifm) = (Zifm ⊕Q Pifm)⊕Q Nifm

(ii) Zifm ⊙Q (Pifm ⊙Q Nifm) = (Zifm ⊙Q Pifm)⊙Q Nifm

proof 3.2. (i) Let (P ⊕M V) = (〈kαβ, k
′

αβ〉)

Z ⊕M (P ⊕M V) = (〈1− (1− zαβ)(1− kαβ), (1− zαβ)(1− kαβ)− (1− (zαβ + z
′

αβ))

(1− (kαβ + k
′

αβ))〉)

(1− kαβ) = [1− (1− (1− pαβ)(1− vαβ))] = (1− pαβ)(1− vαβ)

1− (1− zαβ)(1− kαβ) = 1− (1− zαβ)(1− pαβ)(1− vαβ)
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(1− (kαβ + k
′

αβ)) = (1− (pαβ + p
′

αβ))(1− (vαβ + v
′

αβ))

(1− (zαβ + z
′

αβ))(1− (kαβ + k
′

αβ)) = (1− (zαβ + z
′

αβ))(1− (pαβ + p
′

αβ))(1− (vαβ + v
′

αβ))

Z ⊕M (P ⊕M V) = (〈1− (1− zαβ)(1− pαβ)(1− vαβ), (1− (zαβ + z
′

αβ))

(1− (pαβ + p
′

αβ))(1− (vαβ + v
′

αβ))〉)

(Z ⊕M P)⊕M V = (〈1− (1− zαβ)(1− pαβ)(1− vαβ), (1− (zαβ + z
′

αβ))

(1− (pαβ + p
′

αβ))(1− (vαβ + v
′

αβ))〉)

Z ⊕M (P ⊕M V) = (Z ⊕M P)⊕M V

Similarly, (ii) can be proved as in (i).

Remark 3.3. The IFMs fail to satisfy both the left and right distributive laws involving addition over
multiplication as well as multiplication over addition.

(i) Zifm ⊕ (Kifm ⊙Nifm) 6= (Zifm ⊕ Pifm)⊙ (Zifm ⊕Nifm)

(ii) Zifm ⊙ (Kifm ⊕Nifm) 6= (Zifm ⊙ Pifm)⊕ (Zifm ⊙Nifm)

It is demonstrated by the following example.

Example 3.4. Let Z =

[

(0.2, 0.8) (0.7, 0.3)
(0.6, 0.4) (0.8, 0.2)

]

,

P =

[

(0.5, 0.5) (0.6, 0.3)
(0.9, 0.1) (0.3, 0.5)

]

and V =

[

(0.1, 0.9) (0.7, 0.2)
(0.3, 0.4) (1, 0)

]

be three IFMs in Umn then,

P ⊙M V =

[

(0.25, 0.75) (0.55, 0.44)
(0.54, 0.46) (0.5, 0.5)

]

Z ⊕M (P ⊙M V) =

[

(0.24, 0.76) (0.87, 0.13)
(0.64, 0.36) (0.9, 0.1)

]

Z ⊕M P =

[

(0.6, 0.4) (0.72, 0.28)
(0.96, 0.04) (0.86, 0.14)

]

Z ⊕M P =

[

(0.28, 0.72) (0.91, 0.09)
(0.72, 0.28) (1, 0)

]

(Z ⊕M P)⊙M (Z ⊕M V) =

[

(0.168, 0.832) (0.655, 0.345)
(0.691, 0.309) (0.86, 0.14)

]

Z ⊕M (P ⊙M V) 6= (Z ⊕M P)⊙M (Z ⊕M V)
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Similarly, Z ⊙M (P ⊕M V) 6= (Z ⊙M P)⊕M (Z ⊙M V)

Theorem 3.5. LetZifm = (〈ζαβ, ζ
′

αβ〉) , Pifm = (〈ραβ, ρ
′

αβ〉) and Nifm = (〈ηαβ, η
′

αβ〉) be three IFM
in Umn then,

(i) (Zifm ⊕ Pifm)⊙Nifm 6= (Zifm ⊕Nifm)⊙ (Pifm ⊕Nifm)

(ii) (Zifm ⊙ Pifm)⊕Nifm 6= (Zifm ⊙Nifm)⊕ (Pifm ⊙Nifm)

Example 3.6. (i) LetZifm=

[

(0.2, 0.8) (0.7, 0.3)
(0.6, 0.4) (0.8, 0.2)

]

, Pifm =

[

(0.5, 0.5) (0.6, 0.3)
(0.9, 0.1) (0.3, 0.5)

]

and Nifm =

[

(0.1, 0.9) (0.7, 0.2)
(0.3, 0.4) (1, 0)

]

be three IFMs in Umn then,

(Zifm ⊕Kifm)⊙Nifm =

[

(0.6, 0.4) (0.88, 0.12)
(0.96, 0.04) (0.86, 0.14)

]

(Zifm ⊕Nifm)⊙ (Pifm ⊕Nifm) =

[

(0.98, 0.02) (0.44, 0.56)
(0.46, 0.54) (0.2, 0.8)

]

(Zifm ⊕ Pifm)⊙Nifm 6= (Zifm ⊕Nifm)⊙ (Pifm ⊕Nifm)

Theorem 3.7. LetZifm = (〈ζαβ, ζ
′

αβ〉) and Pifm = (〈ραβ, ρ
′

αβ〉) be two IFM in Umn then,

(i) Zifm ⊙ (Zifm ⊕ Pifm) 6= Zifm

(ii) Zifm ⊕ (Zifm ⊙ Pifm) 6= Zifm

Example 3.8. Let Zifm =

[

(0.8, 0.2) (0.6, 0.4)
(0.3, 0.7) (0.1, 0.9)

]

and Pifm =

[

(0.3, 0.5) (0.5, 0.5)
(0.6, 0.2) (0.4, 0.6)

]

be two IFMs

then in Umn then,

Zifm ⊙ (Zifm ⊙ Pifm) =

[

(0, 0.99) (0.48, 0.52)
(0.22, 0.78) (0.05, 0.95)

]

Zifm ⊙ (Zifm ⊙ Pifm) 6= Zifm

Theorem 3.9. LetZifm = (〈ζαβ, ζ
′

αβ〉) and Pifm = (〈ραβ, ρ
′

αβ〉) be two IFM in Umn then,

(i) Zifm ⊕ (Zifm ∨ Pifm) = Zifm ⊕ Pifm
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(ii) Zifm ⊙ (Zifm ∨ Pifm) = Zifm ⊙ Pifm

Proof:

(i) Zifm ≤ Pifm

LetZifm ∨ Pifm = (〈max(ζαβ, ραβ),min(ζ
′

αβ, ρ
′

αβ)〉) = (〈Cαβ, C
′

αβ〉)

Zifm⊕(Zifm∨Pifm) = (〈1−(1−ζαβ)(1−Cαβ), (1−ζαβ)(1−Cαβ)−(1−(ζαβ+ζ
′

αβ))(1−(Cαβ+C
′

αβ))〉)

1− Cαβ = 1−max(ζαβ, ραβ) = 1− ραβ

1− (Cαβ + C
′

αβ) = 1− (max(ζαβ, ραβ) + min(ζ
′

αβ, ρ
′

αβ)) = 1− (ραβ + ρ
′

αβ)

Zifm⊕(Zifm∨Pifm) = (〈1−(1−ζαβ)(1−ραβ), (1−ζαβ)(1−ραβ)−(1−(ζαβ+ζ
′

αβ))(1−(ραβ+ρ
′

αβ))〉)

Zifm ⊕ (Zifm ∨ Pifm) = Zifm ⊕ Pifm

Similarly we can prove (ii).

Remark 3.10. LetZifm = (〈ζαβ, ζ
′

αβ〉) and Pifm = (〈ραβ, ρ
′

αβ〉) be two IFM in Umn when,

Zifm ≥ Pifm

(i) Zifm ⊕ (Zifm ∨ Pifm) 6= Zifm ⊕ Pifm

(ii) Zifm ⊙ (Zifm ∨ Pifm) 6= Zifm ⊙ Pifm

Example 3.11. Let Zifm =

[

(0.8, 0.1) (0.6, 0.4)
(0.3, 0.7) (0.1, 0.9)

]

and Pifm =

[

(0.3, 0.5) (0.5, 0.5)
(0.6, 0.2) (0.4, 0.6)

]

be two IFMs

then in Umn then,

Zifm ⊕ (Zifm ∨ Pifm) =

[

(0.96, 0.3) (0.84, 0.16)
(0.51, 0.49) (0.19, 0.81)

]

Zifm ⊕ Pifm =

[

(0.86, 0.12) (0.8, 0.2)
(0.72, 0.28) (0.46, 0.54)

]

Zifm ⊕ (Zifm ∨ Pifm) 6= Zifm ⊕ Pifm

Theorem 3.12. LetZifm = (〈ζαβ, ζ
′

αβ〉) and Pifm = (〈ραβ, ρ
′

αβ〉) be two IFM in Umn then,
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(i) Zifm ⊕ (Zifm ∧ Pifm) = Zifm ⊕ Pifm

(ii) Zifm ⊙ (Zifm ∧ Pifm) = Zifm ⊙ Pifm

Proof:

(i) Zifm ≥ Pifm

LetZifm ∧ Pifm = (〈min(ζαβ, ραβ),max(ζ
′

αβ, ρ
′

αβ)〉) = (〈Cαβ, C
′

αβ〉)

Zifm⊕(Zifm∧Pifm) = (〈1−(1−ζαβ)(1−Cαβ), (1−ζαβ)(1−Cαβ)−(1−(ζαβ+ζ
′

αβ))(1−(Cαβ+C
′

αβ))〉)

1− Cαβ = 1−min(ζαβ, ραβ) = 1− ραβ

1− (Cαβ + C
′

αβ) = 1− (min(ζαβ, ραβ) + max(ζ
′

αβ, ρ
′

αβ)) = 1− (ραβ + ρ
′

αβ)

Zifm⊕(Zifm∨Pifm) = (〈1−(1−ζαβ)(1−ραβ), (1−ζαβ)(1−ραβ)−(1−(ζαβ+ζ
′

αβ))(1−(ραβ+ρ
′

αβ))〉)

Zifm ⊕ (Zifm ∨ Pifm) = Zifm ⊕ Pifm

Similarly we can prove (ii).

Remark 3.13. LetZifm = (〈ζαβ, ζ
′

αβ〉) and Pifm = (〈ραβ, ρ
′

αβ〉) be two IFM in Umn when,

Zifm ≤ Pifm

(i) Zifm ⊕ (Zifm ∧ Pifm) 6= Zifm ⊕ Pifm

(ii) Zifm ⊙ (Zifm ∧ Pifm) 6= Zifm ⊙ Pifm

Example 3.14. Let Zifm =

[

(0.7, 0.3) (0.4, 0.6)
(0.5, 0.5) (0.2, 0.8)

]

and Pifm =

[

(0.6, 0.4) (0.9, 0.1)
(0.8, 0.2) (0.1, 0.9)

]

be two IFMs

then in Umn then,

Zifm ⊕ (Zifm ∧ Pifm) =

[

(0.91, 0.09) (0.64, 0.36)
(0.75, 0.25) (0.36, 0.64)

]

Zifm ⊕ Pifm =

[

(0.88, 0.12) (0.94, 0.06)
(0.9, 0.1) (0.28, 0.72)

]

Zifm ⊕ (Zifm ∧ Pifm) 6= Zifm ⊕ Pifm
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Theorem 3.15. LetZifm = (〈ζαβ, ζ
′

αβ〉) and Pifm = (〈ραβ, ρ
′

αβ〉) be two IFM in Umn then,

(i) (Zifm ⊕Q Pifm)
∁ = Z∁

ifm ⊙Q P∁
ifm

(ii) (Zifm ⊙Q Pifm)
∁ = Z∁

ifm ⊕Q P∁
ifm

Proof:

(i) (Zifm⊕QPifm) = (〈1− (1− ζαβ)(1−ραβ), (1− ζαβ)(1−ραβ)− (1− (ζαβ + ζ
′

αβ))(1− (ραβ +ρ
′

αβ))〉)

(Zifm⊕QPifm)
∁ = (〈(1− ζαβ)(1−ραβ)− (1− (ζαβ + ζ

′

αβ))(1− (ραβ +ρ
′

αβ)), 1− (1− ζαβ)(1−ραβ)〉)

= Z∁
ifm ⊙Q P∁

ifm

Similarly we can Prove (ii).

Example 3.16. (i) Let Zifm =

[

(0.2, 0.8) (0.3, 0.7)
(0.4, 0.6) (0.5, 0.5)

]

and Pifm =

[

(0.8, 0.2) (0.4, 0.6)
(0.1, 0.9) (0.7, 0.3)

]

be two

IFMs then in Umn then,

(Zifm ⊕Q Pifm)
∁ =

[

(0.16, 0.84) (0.42, 0.58)
(0.54, 0.46) (0.15, 0.85)

]

Z∁
ifm ⊙Q P∁

ifm =

[

(0.16, 0.84) (0.42, 0.58)
(0.54, 0.46) (0.15, 0.85)

]

(Zifm ⊕Q Pifm)
∁ = Z∁

ifm ⊙Q P∁
ifm

Theorem 3.17. Let Zifm = (〈ζαβ, ζ
′

αβ〉) and Pifm = (〈ραβ, ρ
′

αβ〉) be two IFMs in Umn then,

(i) (Zifm ⊕M Pifm)@(Zifm ⊕M Pifm) = (Zifm ⊕M Pifm)

(ii) (Zifm ⊙M Pifm)@(Zifm ⊙M Pifm) = (Zifm ⊙M Pifm)

proof 3.18.

(i) Let (Zifm⊕MPifm) = (〈1−(1−ζαβ)(1−ραβ), (1−ζαβ)(1−ραβ)−(1−(ζαβ+ζ
′

αβ))(1−(ραβ+ρ
′

αβ))〉)

= (〈kij, k
′

ij〉)

(Zifm ⊕M Pifm)@(Zifm ⊕M Pifm) = (〈kij, k
′

ij〉)@(〈kij, k
′

ij〉)

= (〈kij, k
′

ij〉)

(Zifm ⊕M Pifm)@(Zifm ⊕M Pifm) = (Zifm ⊕M Pifm)
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Similarly, (ii) an be poved as in (i).

Theorem 3.19. Let Zifm = (〈ζαβ, ζ
′

αβ〉) and Pifm = (〈ραβ, ρ
′

αβ〉) be two IFMs in Umn then,

(i) (Zifm ⊕M Pifm)$(Zifm ⊕M Pifm) = (Zifm ⊕M Pifm)

(ii) (Zifm ⊙M Pifm)$(Zifm ⊙M Pifm) = (Zifm ⊙M Pifm)

proof 3.20.

(i) Let (Zifm⊕MPifm) = (〈1−(1−ζαβ)(1−ραβ), (1−ζαβ)(1−ραβ)−(1−(ζαβ+ζ
′

αβ))(1−(ραβ+ρ
′

αβ))〉)

= (〈kij, k
′

ij〉)

(Zifm ⊕M Pifm)@(Zifm ⊕M Pifm) = (〈kij, k
′

ij〉)$(〈kij, k
′

ij〉)

= (〈kij, k
′

ij〉)

(Zifm ⊕M Pifm)$(Zifm ⊕M Pifm) = (Zifm ⊕M Pifm)

In this way (ii) can be proved.

Theorem 3.21. Let Zifm = (〈ζαβ, ζ
′

αβ〉) and Pifm = (〈ραβ, ρ
′

αβ〉) be two IFMs in Umn then,

(i) (Zifm ∨ Pifm)⊕M (Zifm ∧ Pifm) = (Zifm ⊕M Pifm)

(ii) (Zifm ∧ Pifm)⊕M (Zifm ∨ Pifm) = (Zifm ⊕M Pifm)

proof 3.22.

(i) (Zifm ∨ Pifm)⊕M (Zifm ∧ Pifm) = (〈max(ζαβ, ραβ), min(ζ
′

αβ, ρ
′

αβ)〉)⊕M (〈min(ζαβ, ραβ),

max(ζ
′

αβ, ρ
′

αβ)〉)

= (〈ζαβ, ζ
′

αβ〉)⊕M (〈ραβ, ρ
′

αβ〉)

= (〈1− (1− ζαβ)(1− ραβ), (1− ζαβ)(1− ραβ)− (1− (ζαβ + ζ
′

αβ))

(1− (ραβ + ρ
′

αβ))〉)

(Zifm ∨ Pifm)⊕M (Zifm ∧ Pifm) = (Zifm ⊕M Pifm)
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In this way (ii) can be proved.

Theorem 3.23. Let Zifm = (〈ζαβ, ζ
′

αβ〉) and Pifm = (〈ραβ, ρ
′

αβ〉) be two IFMs in Umn then,

(i) (Zifm ∨ Pifm)⊙M (Zifm ∧ Pifm) = (Zifm ⊙M Pifm)

(ii) (Zifm ∧ Pifm)⊙M (Zifm ∨ Pifm) = (Zifm ⊙M Pifm)

proof 3.24.

(i) (Zifm ∨ Pifm)⊙M (Zifm ∧ Pifm) = (〈max(ζαβ, ραβ), min(ζ
′

αβ, ρ
′

αβ)〉)⊕M (〈min(ζαβ, ραβ),

max(ζ
′

αβ, ρ
′

αβ)〉)

= (〈ζαβ, ζ
′

αβ〉)⊙M (〈ραβ, ρ
′

αβ〉)

= (〈(1− ζ
′

αβ)(1− ρ
′

αβ)− (1− (ζαβ + ζ
′

αβ))(1− (ραβ + ρ
′

αβ)),

1− (1− ζ
′

αβ)(1− ρ
′

αβ)

(Zifm ∨ Pifm)⊙M (Zifm ∧ Pifm) = (Zifm ⊙M Pifm)

In this way (ii) can be proved.

4 Scalar multiple and exponetiation operation related results:

In this section, we present some results related to the scalar and exponentiation operations of IFMs.

Theorem 4.1. Let Zifm = (〈ζαβ, ζ
′

αβ〉) be an IFM of in Umn then, the exponentiation operations of
Zifm for any positive integer n > 0 ,

Zn
ifm ⊙Q Pn

ifm = (Zifm ⊙Q Pifm)
n

Proof: Let Zn
ifm = (〈(1− ζ

′

αβ)
n − (1− (ζαβ + ζ

′

αβ))
n, 1− (1− ζ

′

αβ)
n〉) = (〈Cαβ, C

′

αβ〉)

Pn
ifm = (〈(1− ρ

′

αβ)
n − (1− (ραβ + ζ

′

αβ))
n, 1− (1− ρ

′

αβ)
n〉) = (〈Sαβ,S

′

αβ〉)

Zn
ifm ⊙Q Pn

ifm = (〈(1− c
′

αβ)(1−Sαβ
′

)− (1− (Cαβ + C
′

αβ))(1− (Sαβ + S
′

αβ)), 1− (1− C
′

αβ)(1−S
′

αβ)〉)

(1− C
′

αβ)(1− S
′

αβ) = (1− (1− (1− ζαβ)
n))(1− (1− (1− ραβ)

n)) = (1− ζαβ)
n(1− ραβ)

n
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(1− (Cαβ + C
′

αβ)) = 1− ((1− ζ
′

αβ)
n − (1− (ζαβ + ζ

′

αβ))
n + 1− (1− ζ

′

αβ)
n) = (1− (ζαβ + ζ

′

αβ))
n

(1− (Sαβ + S
′

αβ)) = 1− ((1− ρ
′

αβ)
n − (1− (ραβ + ζ

′

αβ))
n + 1− (1− ρ

′

αβ)
n) = (1− (ραβ + ρ

′

αβ))
n

1− (1− C
′

αβ)(1− S
′

αβ) = 1− (1− ζαβ)
n(1− ραβ)

n

Zn
ifm⊙QP

n
ifm = (〈(1−ζαβ)

n(1−ραβ)
n−(1−(ζαβ+ζ

′

αβ))
n(1−(ραβ+ρ

′

αβ))
n, 1−(1−ζαβ)

n(1−ραβ)
n〉)

= (Zifm ⊙Q Pifm)
n

Theorem 4.2. Let Zifm = (〈ζαβ, ζ
′

αβ〉) be an IFM in Umn then, the scalar and exponenetiation
operations of Zifm for any positive integer n > 0 ,

(i) (Z∁
ifm)

n = (nZifm)
∁

(ii) n(Z∁
ifm) = (Zn

ifm)
∁

Proof:

(i) Z∁
ifm = (〈ζ

′

αβ, ζαβ〉)

(Z∁
ifm)

n = (〈(1− ζαβ)
n − (1− (ζαβ + ζ

′

αβ))
n, 1− (1− ζαβ)

n〉)

nZifm = (〈1− (1− ζαβ)
n, (1− ζαβ)

n − (1− (ζαβ + ζ
′

αβ))
n〉)

(nZifm)
∁ = (〈(1− ζαβ)

n − (1− (ζαβ + ζ
′

αβ))
n, 1− (1− ζαβ)

n〉)

(Z∁
ifm)

n = (nZifm)
∁

(ii) Z∁
ifm = (〈ζ

′

αβ, ζαβ〉)

n(Z∁
ifm) = (〈1− (1− ζ

′

αβ)
n, (1− ζ

′

αβ)
n − (1− (ζαβ + ζ

′

αβ))
n〉)

Zn
ifm = (〈(1− ζ

′

αβ)
n − (1− (ζαβ + ζ

′

αβ))
n, 1− (1− ζ

′

αβ)
n〉)

(Zn
ifm)

∁ = (〈1− (1− ζ
′

αβ)
n, (1− ζ

′

αβ)
n − (1− (ζαβ + ζ

′

αβ))
n〉)

n(Z∁
ifm) = (Zn

ifm)
∁
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Theorem 4.3. Let Zifm = (〈ζαβ, ζ
′

αβ〉) be an IFM in Umn then, the exponentiation operations of Zifm

for any positive integer m,n > 0 ,

(i) (Zm
ifm)

n = Zmn
αβ

(ii) mn(Zifm) = m(nZifm)

Proof:

(i) Let Zm
ifm = (〈(1− ζ

′

αβ)
m − (1− (ζαβ + ζ

′

αβ))
m, 1− (1− ζ

′

αβ)
m〉) = (〈Cαβ, C

′

αβ〉)

(Zm
ifm)

n = (〈(1− C
′

αβ)
n − (1− (Cαβ + C

′

αβ))
n, 1− (1− C

′

αβ)
n〉)

(1− C
′

αβ)
n = [1− (1− (1− ζ

′

αβ)
m)]n = (1− ζ

′

αβ)
mn

(1− (Cαβ + C
′

αβ))
n = [1− ((1− ζ

′

αβ)
m − (1− (ζαβ + ζ

′

αβ))
m, 1− (1− ζ

′

αβ)
m)]n = (1− (ζαβ + ζ

′

αβ))
mn

1− (1− C
′

αβ)
n = 1− (1− ζ

′

αβ)
mn

(Zm
ifm)

n = (〈(1− ζ
′

αβ)
mn − (1− (ζαβ + ζ

′

αβ))
mn, 1− (1− ζ

′

αβ)
mn〉)

= (Zifm)
mn

(ii) Let nZifm = (〈1− (1− ζαβ)
n, (1− ζαβ)

n − (1− (ζαβ + ζ
′

αβ))
n〉) = (〈Cαβ, C

′

αβ〉)

mnZifm = (〈1− (1− ζαβ)
mn, (1− ζαβ)

mn − (1− (ζαβ + ζ
′

αβ))
mn〉)

m(nZifm) = (〈1− (1− Cαβ)
n, (1− Cαβ)

n − (1− (Cαβ + C
′

αβ))
n〉)

(1− Cαβ)
n = [1− (1− (1− ζαβ)

m)]n = (1− ζαβ)
mn

(1− (Cαβ + C
′

αβ))
n = [1− ((1− ζαβ)

m − (1− (ζαβ + ζ
′

αβ))
m, 1− (1− ζαβ)

m)]n = (1− (ζαβ + ζ
′

αβ))
mn

1− (1− Cαβ)
n = 1− (1− ζαβ)

mn

m(nZifm) = (〈1− (1− ζαβ)
mn, (1− ζαβ)

mn − (1− (ζαβ + ζ
′

αβ))
mn〉)

mn(Zifm) = m(nZifm)
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5 Conclusion:

The present study explored the associative, distributive, absorption properties and some other results
associated with two algebraic operations of addition and multiplication on IFMs. Furthermore, the
scalar multiplication and exponentiation related results also presented.
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