

Properties of algebraic operations on Intuitionistic Fuzzy Matrices

¹S.Sriram and ^{2*}A.Anitha
^{1,2*} Department of Mathematics,
Annamalai University
Annamalainagar-608002
Tamilnadu, India.
E.mail:ssm_3096@yahoo.co.in
anithaamutha1@gmail.com

Abstract: In this paper, the properties of algebraic operations such as associative, distributive, absorption and De Morgans laws are studied. Some other results also studied. Furthermore, by applying concepts of scalar multiplication and the exponentiation operation several results are presented.

Key words: Intuitionistic fuzzy matrix, Associative, Distributive and Absorption, De Morgan's Law, scalar multiplication and exponentiation operation.

1 Introduction:

In the year 1965, Zadeh [8] introduced Fuzzy sets(FS) to model uncertainty problems. It forms the foundation for the fuzzy matrix theory. In 1977, Thomason introduced the concept of Fuzzy matrix(FM) as an extension of Boolean matrix and In the year 1980, Kim and Roush developed the theory for fuzzy matrices. The concept of Intuitionistic fuzzy set(IFS) was later formulated by Atanassov[1] 1983 which includes both membership and non-membership functions. Following this, Pal et al.[5] advanced the field 2002 by introducing the concept of an IFM. The use of IFMs has been widely investigated in several research contexts. Depending on additive and multiplicative operations Pal presented algebraic operations of an IFMs. Boobalan and Sriram investigated the arithmetic Operations of IFMs. Later on Ramakrishnan and Sriram[7] presented the algebraic operations on IFMs and also studied scalar multiplication and exponentiation operation based on these operations.

In this paper, we studied the properties of algebraic operations on IFM, such as associative, distributive, etc. Also proved some other results on IFM. Furthermore, related results concerning scalar multiplication and exponentiation operations were developed.

2 Preliminaries:

This section presents key definitions that form the foundation for the analysis and discussion in this paper.

Definition 2.1. [7] Let $\mathcal{Z}_{ifm} = (\langle \zeta_{\alpha\beta}, \zeta'_{\alpha\beta} \rangle)$ and $\mathcal{P}_{ifm} = (\langle \rho_{\alpha\beta}, \rho'_{\alpha\beta} \rangle)$ denote two IFM of dimension $m \times n$ then,

$$(i) \quad \mathcal{Z}_{ifm} \oplus_Q \mathcal{P}_{ifm} = (\langle \zeta_{\alpha\beta} + \rho_{\alpha\beta} - \zeta_{\alpha\beta}\rho_{\alpha\beta}, \zeta'_{\alpha\beta} + \rho'_{\alpha\beta} - \zeta'_{\alpha\beta}\rho'_{\alpha\beta} - \zeta_{\alpha\beta}\rho'_{\alpha\beta} \rangle)$$

$$(ii) \quad \mathcal{Z}_{ifm} \odot_Q \mathcal{P}_{ifm} = \langle \zeta_{\alpha\beta} + \rho_{\alpha\beta} - \zeta_{\alpha\beta}\rho_{\alpha\beta} - \zeta'_{\alpha\beta}\rho'_{\alpha\beta} - \zeta'_{\alpha\beta}\rho_{\alpha\beta} \rangle, \zeta'_{\alpha\beta} + \rho'_{\alpha\beta} - \zeta'_{\alpha\beta}\rho'_{\alpha\beta}$$

The equations are restated below in their corresponding form,

$$(i) \quad \mathcal{Z}_{ifm} \oplus_Q \mathcal{P}_{ifm} = (\langle 1 - (1 - \zeta_{\alpha\beta})(1 - \rho_{\alpha\beta}), (1 - \zeta_{\alpha\beta})(1 - \rho_{\alpha\beta}) - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))(1 - (\rho_{\alpha\beta} + \rho'_{\alpha\beta})) \rangle)$$

$$(ii) \quad \mathcal{Z}_{ifm} \odot_Q \mathcal{P}_{ifm} = \langle (1 - \zeta'_{\alpha\beta})(1 - \rho_{\alpha\beta}) - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))(1 - (\rho_{\alpha\beta} + \rho'_{\alpha\beta})), 1 - (1 - \zeta'_{\alpha\beta})(1 - \rho_{\alpha\beta}) \rangle$$

Where $\zeta_{\alpha\beta}$ be an IFM of α^{th} row and β^{th} column.

Definition 2.2. [7] Let $\mathcal{Z}_{ifm} = (\langle \zeta_{\alpha\beta}, \zeta'_{\alpha\beta} \rangle)$ be an IFM of dimension $m \times n$ then, the scalar and exponentiation operations of \mathcal{Z}_{ifm} are defined for any positive integer $n > 0$,

$$(i) \quad n\mathcal{Z}_{ifm} = (\langle 1 - (1 - \zeta_{\alpha\beta})^n, (1 - \zeta_{\alpha\beta})^n - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^n \rangle)$$

$$(ii) \quad \mathcal{Z}_{ifm}^n = (\langle (1 - \zeta'_{\alpha\beta})^n - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^n, 1 - (1 - \zeta'_{\alpha\beta})^n \rangle)$$

3 Main Results:

In this section, we prove properties of algebraic operations of IFMs.

Theorem 3.1. Let $\mathcal{Z}_{ifm} = (\langle \zeta_{\alpha\beta}, \zeta'_{\alpha\beta} \rangle)$, $\mathcal{P}_{ifm} = (\langle \rho_{\alpha\beta}, \rho'_{\alpha\beta} \rangle)$ and $\mathcal{N}_{ifm} = (\langle \eta_{\alpha\beta}, \eta'_{\alpha\beta} \rangle)$ be three IFM in \mathbb{U}_{mn} then,

$$(i) \quad \mathcal{Z}_{ifm} \oplus_Q (\mathcal{P}_{ifm} \oplus_Q \mathcal{N}_{ifm}) = (\mathcal{Z}_{ifm} \oplus_Q \mathcal{P}_{ifm}) \oplus_Q \mathcal{N}_{ifm}$$

$$(ii) \quad \mathcal{Z}_{ifm} \odot_Q (\mathcal{P}_{ifm} \odot_Q \mathcal{N}_{ifm}) = (\mathcal{Z}_{ifm} \odot_Q \mathcal{P}_{ifm}) \odot_Q \mathcal{N}_{ifm}$$

proof 3.2. (i) Let $(\mathcal{P} \oplus_M \mathcal{V}) = (\langle \mathbf{k}_{\alpha\beta}, \mathbf{k}'_{\alpha\beta} \rangle)$

$$\mathcal{Z} \oplus_M (\mathcal{P} \oplus_M \mathcal{V}) = (\langle 1 - (1 - z_{\alpha\beta})(1 - \mathbf{k}_{\alpha\beta}), (1 - z_{\alpha\beta})(1 - \mathbf{k}_{\alpha\beta}) - (1 - (z_{\alpha\beta} + z'_{\alpha\beta}))(1 - (\mathbf{k}_{\alpha\beta} + \mathbf{k}'_{\alpha\beta})) \rangle)$$

$$(1 - \mathbf{k}_{\alpha\beta}) = [1 - (1 - (1 - p_{\alpha\beta})(1 - v_{\alpha\beta}))] = (1 - p_{\alpha\beta})(1 - v_{\alpha\beta})$$

$$1 - (1 - z_{\alpha\beta})(1 - \mathbf{k}_{\alpha\beta}) = 1 - (1 - z_{\alpha\beta})(1 - p_{\alpha\beta})(1 - v_{\alpha\beta})$$

$$(1 - (k_{\alpha\beta} + k'_{\alpha\beta})) = (1 - (p_{\alpha\beta} + p'_{\alpha\beta}))(1 - (v_{\alpha\beta} + v'_{\alpha\beta}))$$

$$(1 - (z_{\alpha\beta} + z'_{\alpha\beta}))(1 - (k_{\alpha\beta} + k'_{\alpha\beta})) = (1 - (z_{\alpha\beta} + z'_{\alpha\beta}))(1 - (p_{\alpha\beta} + p'_{\alpha\beta}))(1 - (v_{\alpha\beta} + v'_{\alpha\beta}))$$

$$\begin{aligned} \mathcal{Z} \oplus_M (\mathcal{P} \oplus_M \mathcal{V}) &= (\langle 1 - (1 - z_{\alpha\beta})(1 - p_{\alpha\beta})(1 - v_{\alpha\beta}), (1 - (z_{\alpha\beta} + z'_{\alpha\beta})) \\ &\quad (1 - (p_{\alpha\beta} + p'_{\alpha\beta}))(1 - (v_{\alpha\beta} + v'_{\alpha\beta})) \rangle) \end{aligned}$$

$$\begin{aligned} (\mathcal{Z} \oplus_M \mathcal{P}) \oplus_M \mathcal{V} &= (\langle 1 - (1 - z_{\alpha\beta})(1 - p_{\alpha\beta})(1 - v_{\alpha\beta}), (1 - (z_{\alpha\beta} + z'_{\alpha\beta})) \\ &\quad (1 - (p_{\alpha\beta} + p'_{\alpha\beta}))(1 - (v_{\alpha\beta} + v'_{\alpha\beta})) \rangle) \end{aligned}$$

$$\mathcal{Z} \oplus_M (\mathcal{P} \oplus_M \mathcal{V}) = (\mathcal{Z} \oplus_M \mathcal{P}) \oplus_M \mathcal{V}$$

Similarly, (ii) can be proved as in (i).

Remark 3.3. The IFMs fail to satisfy both the left and right distributive laws involving addition over multiplication as well as multiplication over addition.

$$(i) \quad \mathcal{Z}_{ifm} \oplus (\mathcal{K}_{ifm} \odot \mathcal{N}_{ifm}) \neq (\mathcal{Z}_{ifm} \oplus \mathcal{P}_{ifm}) \odot (\mathcal{Z}_{ifm} \oplus \mathcal{N}_{ifm})$$

$$(ii) \quad \mathcal{Z}_{ifm} \odot (\mathcal{K}_{ifm} \oplus \mathcal{N}_{ifm}) \neq (\mathcal{Z}_{ifm} \odot \mathcal{P}_{ifm}) \oplus (\mathcal{Z}_{ifm} \odot \mathcal{N}_{ifm})$$

It is demonstrated by the following example.

$$\text{Example 3.4. Let } \mathcal{Z} = \begin{bmatrix} (0.2, 0.8) & (0.7, 0.3) \\ (0.6, 0.4) & (0.8, 0.2) \end{bmatrix},$$

$$\mathcal{P} = \begin{bmatrix} (0.5, 0.5) & (0.6, 0.3) \\ (0.9, 0.1) & (0.3, 0.5) \end{bmatrix}$$

$$\text{and } \mathcal{V} = \begin{bmatrix} (0.1, 0.9) & (0.7, 0.2) \\ (0.3, 0.4) & (1, 0) \end{bmatrix} \text{ be three IFMs in } \mathbb{U}_{mn} \text{ then,}$$

$$\mathcal{P} \odot_M \mathcal{V} = \begin{bmatrix} (0.25, 0.75) & (0.55, 0.44) \\ (0.54, 0.46) & (0.5, 0.5) \end{bmatrix}$$

$$\mathcal{Z} \oplus_M (\mathcal{P} \odot_M \mathcal{V}) = \begin{bmatrix} (0.24, 0.76) & (0.87, 0.13) \\ (0.64, 0.36) & (0.9, 0.1) \end{bmatrix}$$

$$\mathcal{Z} \oplus_M \mathcal{P} = \begin{bmatrix} (0.6, 0.4) & (0.72, 0.28) \\ (0.96, 0.04) & (0.86, 0.14) \end{bmatrix}$$

$$\mathcal{Z} \oplus_M \mathcal{V} = \begin{bmatrix} (0.28, 0.72) & (0.91, 0.09) \\ (0.72, 0.28) & (1, 0) \end{bmatrix}$$

$$(\mathcal{Z} \oplus_M \mathcal{P}) \odot_M (\mathcal{Z} \oplus_M \mathcal{V}) = \begin{bmatrix} (0.168, 0.832) & (0.655, 0.345) \\ (0.691, 0.309) & (0.86, 0.14) \end{bmatrix}$$

$$\mathcal{Z} \oplus_M (\mathcal{P} \odot_M \mathcal{V}) \neq (\mathcal{Z} \oplus_M \mathcal{P}) \odot_M (\mathcal{Z} \oplus_M \mathcal{V})$$

Similarly, $\mathcal{Z} \odot_M (\mathcal{P} \oplus_M \mathcal{V}) \neq (\mathcal{Z} \odot_M \mathcal{P}) \oplus_M (\mathcal{Z} \odot_M \mathcal{V})$

Theorem 3.5. Let $\mathcal{Z}_{ifm} = (\langle \zeta_{\alpha\beta}, \zeta'_{\alpha\beta} \rangle)$, $\mathcal{P}_{ifm} = (\langle \rho_{\alpha\beta}, \rho'_{\alpha\beta} \rangle)$ and $\mathcal{N}_{ifm} = (\langle \eta_{\alpha\beta}, \eta'_{\alpha\beta} \rangle)$ be three IFM in \mathbb{U}_{mn} then,

$$(i) \quad (\mathcal{Z}_{ifm} \oplus \mathcal{P}_{ifm}) \odot \mathcal{N}_{ifm} \neq (\mathcal{Z}_{ifm} \oplus \mathcal{N}_{ifm}) \odot (\mathcal{P}_{ifm} \oplus \mathcal{N}_{ifm})$$

$$(ii) \quad (\mathcal{Z}_{ifm} \odot \mathcal{P}_{ifm}) \oplus \mathcal{N}_{ifm} \neq (\mathcal{Z}_{ifm} \odot \mathcal{N}_{ifm}) \oplus (\mathcal{P}_{ifm} \odot \mathcal{N}_{ifm})$$

Example 3.6. (i) Let $\mathcal{Z}_{ifm} = \begin{bmatrix} (0.2, 0.8) & (0.7, 0.3) \\ (0.6, 0.4) & (0.8, 0.2) \end{bmatrix}$, $\mathcal{P}_{ifm} = \begin{bmatrix} (0.5, 0.5) & (0.6, 0.3) \\ (0.9, 0.1) & (0.3, 0.5) \end{bmatrix}$

and $\mathcal{N}_{ifm} = \begin{bmatrix} (0.1, 0.9) & (0.7, 0.2) \\ (0.3, 0.4) & (1, 0) \end{bmatrix}$ be three IFMs in \mathbb{U}_{mn} then,

$$(\mathcal{Z}_{ifm} \oplus \mathcal{K}_{ifm}) \odot \mathcal{N}_{ifm} = \begin{bmatrix} (0.6, 0.4) & (0.88, 0.12) \\ (0.96, 0.04) & (0.86, 0.14) \end{bmatrix}$$

$$(\mathcal{Z}_{ifm} \oplus \mathcal{N}_{ifm}) \odot (\mathcal{P}_{ifm} \oplus \mathcal{N}_{ifm}) = \begin{bmatrix} (0.98, 0.02) & (0.44, 0.56) \\ (0.46, 0.54) & (0.2, 0.8) \end{bmatrix}$$

$$(\mathcal{Z}_{ifm} \oplus \mathcal{P}_{ifm}) \odot \mathcal{N}_{ifm} \neq (\mathcal{Z}_{ifm} \oplus \mathcal{N}_{ifm}) \odot (\mathcal{P}_{ifm} \oplus \mathcal{N}_{ifm})$$

Theorem 3.7. Let $\mathcal{Z}_{ifm} = (\langle \zeta_{\alpha\beta}, \zeta'_{\alpha\beta} \rangle)$ and $\mathcal{P}_{ifm} = (\langle \rho_{\alpha\beta}, \rho'_{\alpha\beta} \rangle)$ be two IFM in \mathbb{U}_{mn} then,

$$(i) \quad \mathcal{Z}_{ifm} \odot (\mathcal{Z}_{ifm} \oplus \mathcal{P}_{ifm}) \neq \mathcal{Z}_{ifm}$$

$$(ii) \quad \mathcal{Z}_{ifm} \oplus (\mathcal{Z}_{ifm} \odot \mathcal{P}_{ifm}) \neq \mathcal{Z}_{ifm}$$

Example 3.8. Let $\mathcal{Z}_{ifm} = \begin{bmatrix} (0.8, 0.2) & (0.6, 0.4) \\ (0.3, 0.7) & (0.1, 0.9) \end{bmatrix}$ and $\mathcal{P}_{ifm} = \begin{bmatrix} (0.3, 0.5) & (0.5, 0.5) \\ (0.6, 0.2) & (0.4, 0.6) \end{bmatrix}$ be two IFMs then in \mathbb{U}_{mn} then,

$$\mathcal{Z}_{ifm} \odot (\mathcal{Z}_{ifm} \odot \mathcal{P}_{ifm}) = \begin{bmatrix} (0, 0.99) & (0.48, 0.52) \\ (0.22, 0.78) & (0.05, 0.95) \end{bmatrix}$$

$$\mathcal{Z}_{ifm} \odot (\mathcal{Z}_{ifm} \odot \mathcal{P}_{ifm}) \neq \mathcal{Z}_{ifm}$$

Theorem 3.9. Let $\mathcal{Z}_{ifm} = (\langle \zeta_{\alpha\beta}, \zeta'_{\alpha\beta} \rangle)$ and $\mathcal{P}_{ifm} = (\langle \rho_{\alpha\beta}, \rho'_{\alpha\beta} \rangle)$ be two IFM in \mathbb{U}_{mn} then,

$$(i) \quad \mathcal{Z}_{ifm} \oplus (\mathcal{Z}_{ifm} \vee \mathcal{P}_{ifm}) = \mathcal{Z}_{ifm} \oplus \mathcal{P}_{ifm}$$

$$(ii) \quad \mathcal{Z}_{ifm} \odot (\mathcal{Z}_{ifm} \vee \mathcal{P}_{ifm}) = \mathcal{Z}_{ifm} \odot \mathcal{P}_{ifm}$$

Proof:

$$(i) \quad \mathcal{Z}_{ifm} \leq \mathcal{P}_{ifm}$$

$$Let \mathcal{Z}_{ifm} \vee \mathcal{P}_{ifm} = (\langle \max(\zeta_{\alpha\beta}, \rho_{\alpha\beta}), \min(\zeta'_{\alpha\beta}, \rho'_{\alpha\beta}) \rangle) = (\langle \mathcal{C}_{\alpha\beta}, \mathcal{C}'_{\alpha\beta} \rangle)$$

$$\mathcal{Z}_{ifm} \oplus (\mathcal{Z}_{ifm} \vee \mathcal{P}_{ifm}) = (\langle 1 - (1 - \zeta_{\alpha\beta})(1 - \mathcal{C}_{\alpha\beta}), (1 - \zeta_{\alpha\beta})(1 - \mathcal{C}_{\alpha\beta}) - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))(1 - (\mathcal{C}_{\alpha\beta} + \mathcal{C}'_{\alpha\beta})) \rangle)$$

$$1 - \mathcal{C}_{\alpha\beta} = 1 - \max(\zeta_{\alpha\beta}, \rho_{\alpha\beta}) = 1 - \rho_{\alpha\beta}$$

$$1 - (\mathcal{C}_{\alpha\beta} + \mathcal{C}'_{\alpha\beta}) = 1 - (\max(\zeta_{\alpha\beta}, \rho_{\alpha\beta}) + \min(\zeta'_{\alpha\beta}, \rho'_{\alpha\beta})) = 1 - (\rho_{\alpha\beta} + \rho'_{\alpha\beta})$$

$$\mathcal{Z}_{ifm} \oplus (\mathcal{Z}_{ifm} \vee \mathcal{P}_{ifm}) = (\langle 1 - (1 - \zeta_{\alpha\beta})(1 - \rho_{\alpha\beta}), (1 - \zeta_{\alpha\beta})(1 - \rho_{\alpha\beta}) - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))(1 - (\rho_{\alpha\beta} + \rho'_{\alpha\beta})) \rangle)$$

$$\mathcal{Z}_{ifm} \oplus (\mathcal{Z}_{ifm} \vee \mathcal{P}_{ifm}) = \mathcal{Z}_{ifm} \oplus \mathcal{P}_{ifm}$$

Similarly we can prove (ii).

Remark 3.10. Let $\mathcal{Z}_{ifm} = (\langle \zeta_{\alpha\beta}, \zeta'_{\alpha\beta} \rangle)$ and $\mathcal{P}_{ifm} = (\langle \rho_{\alpha\beta}, \rho'_{\alpha\beta} \rangle)$ be two IFM in \mathbb{U}_{mn} when,

$$\mathcal{Z}_{ifm} \geq \mathcal{P}_{ifm}$$

$$(i) \quad \mathcal{Z}_{ifm} \oplus (\mathcal{Z}_{ifm} \vee \mathcal{P}_{ifm}) \neq \mathcal{Z}_{ifm} \oplus \mathcal{P}_{ifm}$$

$$(ii) \quad \mathcal{Z}_{ifm} \odot (\mathcal{Z}_{ifm} \vee \mathcal{P}_{ifm}) \neq \mathcal{Z}_{ifm} \odot \mathcal{P}_{ifm}$$

Example 3.11. Let $\mathcal{Z}_{ifm} = \begin{bmatrix} (0.8, 0.1) & (0.6, 0.4) \\ (0.3, 0.7) & (0.1, 0.9) \end{bmatrix}$ and $\mathcal{P}_{ifm} = \begin{bmatrix} (0.3, 0.5) & (0.5, 0.5) \\ (0.6, 0.2) & (0.4, 0.6) \end{bmatrix}$ be two IFMs then in \mathbb{U}_{mn} then,

$$\mathcal{Z}_{ifm} \oplus (\mathcal{Z}_{ifm} \vee \mathcal{P}_{ifm}) = \begin{bmatrix} (0.96, 0.3) & (0.84, 0.16) \\ (0.51, 0.49) & (0.19, 0.81) \end{bmatrix}$$

$$\mathcal{Z}_{ifm} \oplus \mathcal{P}_{ifm} = \begin{bmatrix} (0.86, 0.12) & (0.8, 0.2) \\ (0.72, 0.28) & (0.46, 0.54) \end{bmatrix}$$

$$\mathcal{Z}_{ifm} \oplus (\mathcal{Z}_{ifm} \vee \mathcal{P}_{ifm}) \neq \mathcal{Z}_{ifm} \oplus \mathcal{P}_{ifm}$$

Theorem 3.12. Let $\mathcal{Z}_{ifm} = (\langle \zeta_{\alpha\beta}, \zeta'_{\alpha\beta} \rangle)$ and $\mathcal{P}_{ifm} = (\langle \rho_{\alpha\beta}, \rho'_{\alpha\beta} \rangle)$ be two IFM in \mathbb{U}_{mn} then,

$$(i) \quad \mathcal{Z}_{ifm} \oplus (\mathcal{Z}_{ifm} \wedge \mathcal{P}_{ifm}) = \mathcal{Z}_{ifm} \oplus \mathcal{P}_{ifm}$$

$$(ii) \quad \mathcal{Z}_{ifm} \odot (\mathcal{Z}_{ifm} \wedge \mathcal{P}_{ifm}) = \mathcal{Z}_{ifm} \odot \mathcal{P}_{ifm}$$

Proof:

$$(i) \quad \mathcal{Z}_{ifm} \geq \mathcal{P}_{ifm}$$

$$Let \mathcal{Z}_{ifm} \wedge \mathcal{P}_{ifm} = (\langle \min(\zeta_{\alpha\beta}, \rho_{\alpha\beta}), \max(\zeta'_{\alpha\beta}, \rho'_{\alpha\beta}) \rangle) = (\langle \mathcal{C}_{\alpha\beta}, \mathcal{C}'_{\alpha\beta} \rangle)$$

$$\mathcal{Z}_{ifm} \oplus (\mathcal{Z}_{ifm} \wedge \mathcal{P}_{ifm}) = (\langle 1 - (1 - \zeta_{\alpha\beta})(1 - \mathcal{C}_{\alpha\beta}), (1 - \zeta_{\alpha\beta})(1 - \mathcal{C}_{\alpha\beta}) - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))(1 - (\mathcal{C}_{\alpha\beta} + \mathcal{C}'_{\alpha\beta})) \rangle)$$

$$1 - \mathcal{C}_{\alpha\beta} = 1 - \min(\zeta_{\alpha\beta}, \rho_{\alpha\beta}) = 1 - \rho_{\alpha\beta}$$

$$1 - (\mathcal{C}_{\alpha\beta} + \mathcal{C}'_{\alpha\beta}) = 1 - (\min(\zeta_{\alpha\beta}, \rho_{\alpha\beta}) + \max(\zeta'_{\alpha\beta}, \rho'_{\alpha\beta})) = 1 - (\rho_{\alpha\beta} + \rho'_{\alpha\beta})$$

$$\mathcal{Z}_{ifm} \oplus (\mathcal{Z}_{ifm} \vee \mathcal{P}_{ifm}) = (\langle 1 - (1 - \zeta_{\alpha\beta})(1 - \rho_{\alpha\beta}), (1 - \zeta_{\alpha\beta})(1 - \rho_{\alpha\beta}) - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))(1 - (\rho_{\alpha\beta} + \rho'_{\alpha\beta})) \rangle)$$

$$\mathcal{Z}_{ifm} \oplus (\mathcal{Z}_{ifm} \vee \mathcal{P}_{ifm}) = \mathcal{Z}_{ifm} \oplus \mathcal{P}_{ifm}$$

Similarly we can prove (ii).

Remark 3.13. Let $\mathcal{Z}_{ifm} = (\langle \zeta_{\alpha\beta}, \zeta'_{\alpha\beta} \rangle)$ and $\mathcal{P}_{ifm} = (\langle \rho_{\alpha\beta}, \rho'_{\alpha\beta} \rangle)$ be two IFM in \mathbb{U}_{mn} when,

$$\mathcal{Z}_{ifm} \leq \mathcal{P}_{ifm}$$

$$(i) \quad \mathcal{Z}_{ifm} \oplus (\mathcal{Z}_{ifm} \wedge \mathcal{P}_{ifm}) \neq \mathcal{Z}_{ifm} \oplus \mathcal{P}_{ifm}$$

$$(ii) \quad \mathcal{Z}_{ifm} \odot (\mathcal{Z}_{ifm} \wedge \mathcal{P}_{ifm}) \neq \mathcal{Z}_{ifm} \odot \mathcal{P}_{ifm}$$

Example 3.14. Let $\mathcal{Z}_{ifm} = \begin{bmatrix} (0.7, 0.3) & (0.4, 0.6) \\ (0.5, 0.5) & (0.2, 0.8) \end{bmatrix}$ and $\mathcal{P}_{ifm} = \begin{bmatrix} (0.6, 0.4) & (0.9, 0.1) \\ (0.8, 0.2) & (0.1, 0.9) \end{bmatrix}$ be two IFMs then in \mathbb{U}_{mn} then,

$$\mathcal{Z}_{ifm} \oplus (\mathcal{Z}_{ifm} \wedge \mathcal{P}_{ifm}) = \begin{bmatrix} (0.91, 0.09) & (0.64, 0.36) \\ (0.75, 0.25) & (0.36, 0.64) \end{bmatrix}$$

$$\mathcal{Z}_{ifm} \oplus \mathcal{P}_{ifm} = \begin{bmatrix} (0.88, 0.12) & (0.94, 0.06) \\ (0.9, 0.1) & (0.28, 0.72) \end{bmatrix}$$

$$\mathcal{Z}_{ifm} \oplus (\mathcal{Z}_{ifm} \wedge \mathcal{P}_{ifm}) \neq \mathcal{Z}_{ifm} \oplus \mathcal{P}_{ifm}$$

Theorem 3.15. Let $\mathcal{Z}_{ifm} = (\langle \zeta_{\alpha\beta}, \zeta'_{\alpha\beta} \rangle)$ and $\mathcal{P}_{ifm} = (\langle \rho_{\alpha\beta}, \rho'_{\alpha\beta} \rangle)$ be two IFM in \mathbb{U}_{mn} then,

$$(i) \quad (\mathcal{Z}_{ifm} \oplus_Q \mathcal{P}_{ifm})^C = \mathcal{Z}_{ifm}^C \odot_Q \mathcal{P}_{ifm}^C$$

$$(ii) \quad (\mathcal{Z}_{ifm} \odot_Q \mathcal{P}_{ifm})^C = \mathcal{Z}_{ifm}^C \oplus_Q \mathcal{P}_{ifm}^C$$

Proof:

$$(i) \quad (\mathcal{Z}_{ifm} \oplus_Q \mathcal{P}_{ifm}) = (\langle 1 - (1 - \zeta_{\alpha\beta})(1 - \rho_{\alpha\beta}), (1 - \zeta_{\alpha\beta})(1 - \rho_{\alpha\beta}) - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))(1 - (\rho_{\alpha\beta} + \rho'_{\alpha\beta})) \rangle)$$

$$\begin{aligned} (\mathcal{Z}_{ifm} \oplus_Q \mathcal{P}_{ifm})^C &= (\langle (1 - \zeta_{\alpha\beta})(1 - \rho_{\alpha\beta}) - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))(1 - (\rho_{\alpha\beta} + \rho'_{\alpha\beta})), 1 - (1 - \zeta_{\alpha\beta})(1 - \rho_{\alpha\beta}) \rangle) \\ &= \mathcal{Z}_{ifm}^C \odot_Q \mathcal{P}_{ifm}^C \end{aligned}$$

Similarly we can Prove (ii).

Example 3.16. (i) Let $\mathcal{Z}_{ifm} = \begin{bmatrix} (0.2, 0.8) & (0.3, 0.7) \\ (0.4, 0.6) & (0.5, 0.5) \end{bmatrix}$ and $\mathcal{P}_{ifm} = \begin{bmatrix} (0.8, 0.2) & (0.4, 0.6) \\ (0.1, 0.9) & (0.7, 0.3) \end{bmatrix}$ be two IFMs then in \mathbb{U}_{mn} then,

$$(\mathcal{Z}_{ifm} \oplus_Q \mathcal{P}_{ifm})^C = \begin{bmatrix} (0.16, 0.84) & (0.42, 0.58) \\ (0.54, 0.46) & (0.15, 0.85) \end{bmatrix}$$

$$\mathcal{Z}_{ifm}^C \odot_Q \mathcal{P}_{ifm}^C = \begin{bmatrix} (0.16, 0.84) & (0.42, 0.58) \\ (0.54, 0.46) & (0.15, 0.85) \end{bmatrix}$$

$$(\mathcal{Z}_{ifm} \oplus_Q \mathcal{P}_{ifm})^C = \mathcal{Z}_{ifm}^C \odot_Q \mathcal{P}_{ifm}^C$$

Theorem 3.17. Let $\mathcal{Z}_{ifm} = (\langle \zeta_{\alpha\beta}, \zeta'_{\alpha\beta} \rangle)$ and $\mathcal{P}_{ifm} = (\langle \rho_{\alpha\beta}, \rho'_{\alpha\beta} \rangle)$ be two IFMs in \mathbb{U}_{mn} then,

$$(i) \quad (\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm}) @ (\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm}) = (\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm})$$

$$(ii) \quad (\mathcal{Z}_{ifm} \odot_M \mathcal{P}_{ifm}) @ (\mathcal{Z}_{ifm} \odot_M \mathcal{P}_{ifm}) = (\mathcal{Z}_{ifm} \odot_M \mathcal{P}_{ifm})$$

proof 3.18.

$$(i) \quad \text{Let } (\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm}) = (\langle 1 - (1 - \zeta_{\alpha\beta})(1 - \rho_{\alpha\beta}), (1 - \zeta_{\alpha\beta})(1 - \rho_{\alpha\beta}) - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))(1 - (\rho_{\alpha\beta} + \rho'_{\alpha\beta})) \rangle) \\ = (\langle \mathbf{k}_{ij}, \mathbf{k}'_{ij} \rangle)$$

$$(\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm}) @ (\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm}) = (\langle \mathbf{k}_{ij}, \mathbf{k}'_{ij} \rangle) @ (\langle \mathbf{k}_{ij}, \mathbf{k}'_{ij} \rangle)$$

$$= (\langle \mathbf{k}_{ij}, \mathbf{k}'_{ij} \rangle)$$

$$(\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm}) @ (\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm}) = (\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm})$$

Similarly, (ii) can be proved as in (i).

Theorem 3.19. Let $\mathcal{Z}_{ifm} = (\langle \zeta_{\alpha\beta}, \zeta'_{\alpha\beta} \rangle)$ and $\mathcal{P}_{ifm} = (\langle \rho_{\alpha\beta}, \rho'_{\alpha\beta} \rangle)$ be two IFMs in \mathbb{U}_{mn} then,

$$(i) \quad (\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm})\$ (\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm}) = (\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm})$$

$$(ii) \quad (\mathcal{Z}_{ifm} \odot_M \mathcal{P}_{ifm})\$ (\mathcal{Z}_{ifm} \odot_M \mathcal{P}_{ifm}) = (\mathcal{Z}_{ifm} \odot_M \mathcal{P}_{ifm})$$

proof 3.20.

$$(i) \quad \text{Let } (\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm}) = (\langle 1 - (1 - \zeta_{\alpha\beta})(1 - \rho_{\alpha\beta}), (1 - \zeta_{\alpha\beta})(1 - \rho_{\alpha\beta}) - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))(1 - (\rho_{\alpha\beta} + \rho'_{\alpha\beta})) \rangle) \\ = (\langle \mathbf{k}_{ij}, \mathbf{k}'_{ij} \rangle)$$

$$(\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm}) @ (\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm}) = (\langle \mathbf{k}_{ij}, \mathbf{k}'_{ij} \rangle) \$ (\langle \mathbf{k}_{ij}, \mathbf{k}'_{ij} \rangle)$$

$$= (\langle \mathbf{k}_{ij}, \mathbf{k}'_{ij} \rangle)$$

$$(\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm})\$ (\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm}) = (\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm})$$

In this way (ii) can be proved.

Theorem 3.21. Let $\mathcal{Z}_{ifm} = (\langle \zeta_{\alpha\beta}, \zeta'_{\alpha\beta} \rangle)$ and $\mathcal{P}_{ifm} = (\langle \rho_{\alpha\beta}, \rho'_{\alpha\beta} \rangle)$ be two IFMs in \mathbb{U}_{mn} then,

$$(i) \quad (\mathcal{Z}_{ifm} \vee \mathcal{P}_{ifm}) \oplus_M (\mathcal{Z}_{ifm} \wedge \mathcal{P}_{ifm}) = (\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm})$$

$$(ii) \quad (\mathcal{Z}_{ifm} \wedge \mathcal{P}_{ifm}) \oplus_M (\mathcal{Z}_{ifm} \vee \mathcal{P}_{ifm}) = (\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm})$$

proof 3.22.

$$(i) \quad (\mathcal{Z}_{ifm} \vee \mathcal{P}_{ifm}) \oplus_M (\mathcal{Z}_{ifm} \wedge \mathcal{P}_{ifm}) = (\langle \max(\zeta_{\alpha\beta}, \rho_{\alpha\beta}), \min(\zeta'_{\alpha\beta}, \rho'_{\alpha\beta}) \rangle) \oplus_M (\langle \min(\zeta_{\alpha\beta}, \rho_{\alpha\beta}), \max(\zeta'_{\alpha\beta}, \rho'_{\alpha\beta}) \rangle)$$

$$= (\langle \zeta_{\alpha\beta}, \zeta'_{\alpha\beta} \rangle) \oplus_M (\langle \rho_{\alpha\beta}, \rho'_{\alpha\beta} \rangle)$$

$$= (\langle 1 - (1 - \zeta_{\alpha\beta})(1 - \rho_{\alpha\beta}), (1 - \zeta_{\alpha\beta})(1 - \rho_{\alpha\beta}) - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))(1 - (\rho_{\alpha\beta} + \rho'_{\alpha\beta})) \rangle)$$

$$(\mathcal{Z}_{ifm} \vee \mathcal{P}_{ifm}) \oplus_M (\mathcal{Z}_{ifm} \wedge \mathcal{P}_{ifm}) = (\mathcal{Z}_{ifm} \oplus_M \mathcal{P}_{ifm})$$

In this way (ii) can be proved.

Theorem 3.23. Let $\mathcal{Z}_{ifm} = (\langle \zeta_{\alpha\beta}, \zeta'_{\alpha\beta} \rangle)$ and $\mathcal{P}_{ifm} = (\langle \rho_{\alpha\beta}, \rho'_{\alpha\beta} \rangle)$ be two IFMs in \mathbb{U}_{mn} then,

$$(i) \quad (\mathcal{Z}_{ifm} \vee \mathcal{P}_{ifm}) \odot_M (\mathcal{Z}_{ifm} \wedge \mathcal{P}_{ifm}) = (\mathcal{Z}_{ifm} \odot_M \mathcal{P}_{ifm})$$

$$(ii) \quad (\mathcal{Z}_{ifm} \wedge \mathcal{P}_{ifm}) \odot_M (\mathcal{Z}_{ifm} \vee \mathcal{P}_{ifm}) = (\mathcal{Z}_{ifm} \odot_M \mathcal{P}_{ifm})$$

proof 3.24.

$$(i) \quad (\mathcal{Z}_{ifm} \vee \mathcal{P}_{ifm}) \odot_M (\mathcal{Z}_{ifm} \wedge \mathcal{P}_{ifm}) = (\langle \max(\zeta_{\alpha\beta}, \rho_{\alpha\beta}), \min(\zeta'_{\alpha\beta}, \rho'_{\alpha\beta}) \rangle) \oplus_M (\langle \min(\zeta_{\alpha\beta}, \rho_{\alpha\beta}), \max(\zeta'_{\alpha\beta}, \rho'_{\alpha\beta}) \rangle)$$

$$= (\langle \zeta_{\alpha\beta}, \zeta'_{\alpha\beta} \rangle) \odot_M (\langle \rho_{\alpha\beta}, \rho'_{\alpha\beta} \rangle)$$

$$= (\langle (1 - \zeta'_{\alpha\beta})(1 - \rho'_{\alpha\beta}) - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))(1 - (\rho_{\alpha\beta} + \rho'_{\alpha\beta})), 1 - (1 - \zeta'_{\alpha\beta})(1 - \rho'_{\alpha\beta}) \rangle)$$

$$(\mathcal{Z}_{ifm} \vee \mathcal{P}_{ifm}) \odot_M (\mathcal{Z}_{ifm} \wedge \mathcal{P}_{ifm}) = (\mathcal{Z}_{ifm} \odot_M \mathcal{P}_{ifm})$$

In this way (ii) can be proved.

4 Scalar multiple and exponentiation operation related results:

In this section, we present some results related to the scalar and exponentiation operations of IFMs.

Theorem 4.1. Let $\mathcal{Z}_{ifm} = (\langle \zeta_{\alpha\beta}, \zeta'_{\alpha\beta} \rangle)$ be an IFM of in \mathbb{U}_{mn} then, the exponentiation operations of \mathcal{Z}_{ifm} for any positive integer $n > 0$,

$$\mathcal{Z}_{ifm}^n \odot_Q \mathcal{P}_{ifm}^n = (\mathcal{Z}_{ifm} \odot_Q \mathcal{P}_{ifm})^n$$

Proof: Let $\mathcal{Z}_{ifm}^n = (\langle (1 - \zeta'_{\alpha\beta})^n - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^n, 1 - (1 - \zeta'_{\alpha\beta})^n \rangle) = (\langle \mathcal{C}_{\alpha\beta}, \mathcal{C}'_{\alpha\beta} \rangle)$

$$\mathcal{P}_{ifm}^n = (\langle (1 - \rho'_{\alpha\beta})^n - (1 - (\rho_{\alpha\beta} + \rho'_{\alpha\beta}))^n, 1 - (1 - \rho'_{\alpha\beta})^n \rangle) = (\langle \mathcal{S}_{\alpha\beta}, \mathcal{S}'_{\alpha\beta} \rangle)$$

$$\mathcal{Z}_{ifm}^n \odot_Q \mathcal{P}_{ifm}^n = (\langle (1 - \mathcal{C}'_{\alpha\beta})(1 - \mathcal{S}'_{\alpha\beta}) - (1 - (\mathcal{C}_{\alpha\beta} + \mathcal{C}'_{\alpha\beta}))(1 - (\mathcal{S}_{\alpha\beta} + \mathcal{S}'_{\alpha\beta})), 1 - (1 - \mathcal{C}'_{\alpha\beta})(1 - \mathcal{S}'_{\alpha\beta}) \rangle)$$

$$(1 - \mathcal{C}'_{\alpha\beta})(1 - \mathcal{S}'_{\alpha\beta}) = (1 - (1 - (1 - \zeta_{\alpha\beta})^n))(1 - (1 - (1 - \rho_{\alpha\beta})^n)) = (1 - \zeta_{\alpha\beta})^n(1 - \rho_{\alpha\beta})^n$$

$$(1 - (\mathcal{C}_{\alpha\beta} + \mathcal{C}'_{\alpha\beta})) = 1 - ((1 - \zeta'_{\alpha\beta})^n - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^n + 1 - (1 - \zeta'_{\alpha\beta})^n) = (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^n$$

$$(1 - (\mathcal{S}_{\alpha\beta} + \mathcal{S}'_{\alpha\beta})) = 1 - ((1 - \rho'_{\alpha\beta})^n - (1 - (\rho_{\alpha\beta} + \zeta'_{\alpha\beta}))^n + 1 - (1 - \rho'_{\alpha\beta})^n) = (1 - (\rho_{\alpha\beta} + \rho'_{\alpha\beta}))^n$$

$$1 - (1 - \mathcal{C}'_{\alpha\beta})(1 - \mathcal{S}'_{\alpha\beta}) = 1 - (1 - \zeta_{\alpha\beta})^n(1 - \rho_{\alpha\beta})^n$$

$$\mathcal{Z}_{ifm}^n \odot_Q \mathcal{P}_{ifm}^n = (\langle (1 - \zeta_{\alpha\beta})^n(1 - \rho_{\alpha\beta})^n - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^n(1 - (\rho_{\alpha\beta} + \rho'_{\alpha\beta}))^n, 1 - (1 - \zeta_{\alpha\beta})^n(1 - \rho_{\alpha\beta})^n \rangle)$$

$$= (\mathcal{Z}_{ifm} \odot_Q \mathcal{P}_{ifm})^n$$

Theorem 4.2. Let $\mathcal{Z}_{ifm} = (\langle \zeta_{\alpha\beta}, \zeta'_{\alpha\beta} \rangle)$ be an IFM in \mathbb{U}_{mn} then, the scalar and exponentiation operations of \mathcal{Z}_{ifm} for any positive integer $n > 0$,

$$(i) \quad (\mathcal{Z}_{ifm}^{\complement})^n = (n \mathcal{Z}_{ifm})^{\complement}$$

$$(ii) \quad n(\mathcal{Z}_{ifm}^{\complement}) = (\mathcal{Z}_{ifm}^n)^{\complement}$$

Proof:

$$(i) \quad \mathcal{Z}_{ifm}^{\complement} = (\langle \zeta'_{\alpha\beta}, \zeta_{\alpha\beta} \rangle)$$

$$(\mathcal{Z}_{ifm}^{\complement})^n = (\langle (1 - \zeta_{\alpha\beta})^n - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^n, 1 - (1 - \zeta_{\alpha\beta})^n \rangle)$$

$$n \mathcal{Z}_{ifm} = (\langle 1 - (1 - \zeta_{\alpha\beta})^n, (1 - \zeta_{\alpha\beta})^n - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^n \rangle)$$

$$(n \mathcal{Z}_{ifm})^{\complement} = (\langle (1 - \zeta_{\alpha\beta})^n - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^n, 1 - (1 - \zeta_{\alpha\beta})^n \rangle)$$

$$(\mathcal{Z}_{ifm}^{\complement})^n = (n \mathcal{Z}_{ifm})^{\complement}$$

$$(ii) \quad \mathcal{Z}_{ifm}^{\complement} = (\langle \zeta'_{\alpha\beta}, \zeta_{\alpha\beta} \rangle)$$

$$n(\mathcal{Z}_{ifm}^{\complement}) = (\langle 1 - (1 - \zeta'_{\alpha\beta})^n, (1 - \zeta'_{\alpha\beta})^n - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^n \rangle)$$

$$\mathcal{Z}_{ifm}^n = (\langle (1 - \zeta'_{\alpha\beta})^n - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^n, 1 - (1 - \zeta'_{\alpha\beta})^n \rangle)$$

$$(\mathcal{Z}_{ifm}^n)^{\complement} = (\langle 1 - (1 - \zeta'_{\alpha\beta})^n, (1 - \zeta'_{\alpha\beta})^n - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^n \rangle)$$

$$n(\mathcal{Z}_{ifm}^{\complement}) = (\mathcal{Z}_{ifm}^n)^{\complement}$$

Theorem 4.3. Let $\mathcal{Z}_{ifm} = (\langle \zeta_{\alpha\beta}, \zeta'_{\alpha\beta} \rangle)$ be an IFM in \mathbb{U}_{mn} then, the exponentiation operations of \mathcal{Z}_{ifm} for any positive integer $m, n > 0$,

$$(i) \quad (\mathcal{Z}_{ifm}^m)^n = \mathcal{Z}_{\alpha\beta}^{mn}$$

$$(ii) \quad mn(\mathcal{Z}_{ifm}) = m(n\mathcal{Z}_{ifm})$$

Proof:

$$(i) \quad \text{Let } \mathcal{Z}_{ifm}^m = (\langle (1 - \zeta'_{\alpha\beta})^m - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^m, 1 - (1 - \zeta'_{\alpha\beta})^m \rangle) = (\langle \mathcal{C}_{\alpha\beta}, \mathcal{C}'_{\alpha\beta} \rangle)$$

$$(\mathcal{Z}_{ifm}^m)^n = (\langle (1 - \mathcal{C}'_{\alpha\beta})^n - (1 - (\mathcal{C}_{\alpha\beta} + \mathcal{C}'_{\alpha\beta}))^n, 1 - (1 - \mathcal{C}'_{\alpha\beta})^n \rangle)$$

$$(1 - \mathcal{C}'_{\alpha\beta})^n = [1 - (1 - (1 - \zeta'_{\alpha\beta})^m)]^n = (1 - \zeta'_{\alpha\beta})^{mn}$$

$$(1 - (\mathcal{C}_{\alpha\beta} + \mathcal{C}'_{\alpha\beta}))^n = [1 - ((1 - \zeta'_{\alpha\beta})^m - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^m, 1 - (1 - \zeta'_{\alpha\beta})^m)]^n = (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^{mn}$$

$$1 - (1 - \mathcal{C}'_{\alpha\beta})^n = 1 - (1 - \zeta'_{\alpha\beta})^{mn}$$

$$(\mathcal{Z}_{ifm}^m)^n = (\langle (1 - \zeta'_{\alpha\beta})^{mn} - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^{mn}, 1 - (1 - \zeta'_{\alpha\beta})^{mn} \rangle)$$

$$= (\mathcal{Z}_{ifm})^{mn}$$

$$(ii) \quad \text{Let } n\mathcal{Z}_{ifm} = (\langle 1 - (1 - \zeta_{\alpha\beta})^n, (1 - \zeta_{\alpha\beta})^n - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^n \rangle) = (\langle \mathcal{C}_{\alpha\beta}, \mathcal{C}'_{\alpha\beta} \rangle)$$

$$mn\mathcal{Z}_{ifm} = (\langle 1 - (1 - \zeta_{\alpha\beta})^{mn}, (1 - \zeta_{\alpha\beta})^{mn} - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^{mn} \rangle)$$

$$m(n\mathcal{Z}_{ifm}) = (\langle 1 - (1 - \mathcal{C}_{\alpha\beta})^n, (1 - \mathcal{C}_{\alpha\beta})^n - (1 - (\mathcal{C}_{\alpha\beta} + \mathcal{C}'_{\alpha\beta}))^n \rangle)$$

$$(1 - \mathcal{C}_{\alpha\beta})^n = [1 - (1 - (1 - \zeta_{\alpha\beta})^m)]^n = (1 - \zeta_{\alpha\beta})^{mn}$$

$$(1 - (\mathcal{C}_{\alpha\beta} + \mathcal{C}'_{\alpha\beta}))^n = [1 - ((1 - \zeta_{\alpha\beta})^m - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^m, 1 - (1 - \zeta_{\alpha\beta})^m)]^n = (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^{mn}$$

$$1 - (1 - \mathcal{C}_{\alpha\beta})^n = 1 - (1 - \zeta_{\alpha\beta})^{mn}$$

$$m(n\mathcal{Z}_{ifm}) = (\langle 1 - (1 - \zeta_{\alpha\beta})^{mn}, (1 - \zeta_{\alpha\beta})^{mn} - (1 - (\zeta_{\alpha\beta} + \zeta'_{\alpha\beta}))^{mn} \rangle)$$

$$mn(\mathcal{Z}_{ifm}) = m(n\mathcal{Z}_{ifm})$$

5 Conclusion:

The present study explored the associative, distributive, absorption properties and some other results associated with two algebraic operations of addition and multiplication on IFMs. Furthermore, the scalar multiplication and exponentiation related results also presented.

References

- [1] Atanassov, K.T., Intuitionistic fuzzy sets, *VII ITKRS session*, Sofia, June 1983.
- [2] Khan, S.K, Pal, M. and Shyamal, A.K, Intuitionistic Fuzzy Matrices, *Notes on Intuitionistic Fuzzy Sets*, 2002, Vol. 8, No. 2, 51-62.
- [3] Kim, K.H., and Roush, R.W., Generalized fuzzy matrices, *Fuzzy Sets and Systems*, 1980, 4, 293-315.
- [4] M.Pal, Intuitionistic fuzzy determinant, *Vidyasagar University Journal of Physical Sciences*, 2001, 7, 87-93.
- [5] M.Ramakrishnan and S.Sriram., Two new operations of intuitionistic fuzzy matrices, *AIP conference proceedings*, 2019, 2177, 020080.
- [6] Yingdong,H.,Huayou,C.,Ligang,Z.,Jinpei,L.,Zhifu,T.,Intuitionistic fuzzy geometric interaction averaging operators and their application to multi-criteria decision making, *Information sciences*, 2014, 259, 142-159.
- [7] E.G. Emam, An operations on Intuitionistic fuzzy matrices, *Filomat*, 2020, 34, 1, 79-88.
- [8] Zadeh, L.A., Fuzzy sets, *Information and control*, 1965, 8, 338-353