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Abstract

In this article, we present a new notion of Pythagorean fuzzy sets and define
several fundamental operators, namely union, intersection, complement, score
function, and accuracy function. In addition, we introduce various aggregation
operators, including the Pythagorean Fuzzy Weighted Average (PFWA) oper-
ator, Pythagorean Fuzzy Weighted Geometric (PFWG) operator, Pythagorean
Fuzzy Weighted Power Average (PFWPA) operator, and Pythagorean Fuzzy
Weighted Power Geometric (PFWPG) operator. Furthermore, we formulate
a multi-criteria decision-making (MCDM) problem and propose an algorithm
based on these aggregation operators under the Pythagorean fuzzy set frame-
work.

Keywords: Pythagorean Fuzzy Set, Score Function, Accuracy Function,
Aggregation Operators, PFWA, PFWG, PFWPA, PFWPG, MCDM.

1 Introduction

The concept of a fuzzy set (FS) was introduced by Zadeh. Subsequently, Atanassov
generalized the fuzzy set theory by proposing the intuitionistic fuzzy set (IFS) [1].
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Later, Yager further extended this framework by introducing the Pythagorean fuzzy
set (PFS). The PFS [2] represents vagueness using a membership degree (MD) func-
tion and a non-membership degree (NMD) function , where the sum of their squares
lies between 0 and 1, that is,(i.e) 0 ≤ µ2 + ϑ2 ≤ 1 . In this article, we investigate
the concept of Pythagorean fuzzy sets, along with entropy measures, score func-
tions, accuracy functions, and various aggregation operators such as PFWA, PFWG,
PFWPA, and PFWPG. Furthermore, an algorithm based on these aggregation op-
erators under the Pythagorean fuzzy set framework is proposed for application in
multi-criteria decision-making (MCDM) problems, supported by a suitable illustra-
tive example [3].

2 preliminary

Definition 2.1. Fuzzy Set[2]
Let U be a non empty set collection of objects denote by y. Then an FS F is
a set having the form F = [y, µ(y), /y ∈ U ], where µF , represents the MD of F
respectively. The mapping µF , : U → [0, 1].

Definition 2.2. Intuitionistic Fuzzy Set [10]
Let U be a non empty set collection of objects denote by y. Then an IFS F is a set
having the form F = [y, µ(y), ϑ(y)/y ∈ U ], where µF , ϑF represents the Membership
degree and Non-Membership Degree of F respectively. The mapping µF , ϑF : U →
[0, 1] and 0 ≤ µF + ϑF ≤ 1. Then, there degree of indeterminacy of y ∈ U to F
defined by πF = 1 − [µF + ϑF ], clearly that µF + ϑF + πF = 1, otherwise πF = 0
then µF + ϑF = 1.

Definition 2.3. Pythagorean Fuzzy Set[2]
Let U be a non empty set collection of objects denote by y. Then an IFS F is a
set having the form F = [y, µ(y), ϑ(y)/y ∈ U ], where µF , ϑF represents the MD and
NMD of F respectively. The mapping µF , ϑF : U → [0, 1] and 0 ≤ µ2

F + ϑ2
F ≤ 1.

Definition 2.4 (6). Let B = [µ(y), ϑ(y)] ,B1 = [µ1, ϑ1] and B2 = [µ2, ϑ2] be the
Pythagorean fuzzy sets and Φ ≥ 0, then the following operators hold
(i) B1 ⊕ B2 = ( 2

√
µ2

1 + µ2
2 − µ2

1µ
2
2, (ϑ1ϑ2))

(ii) B1 ⊗ B2 = ((µ1µ2),
2

√
ϑ

1/2
1 + ϑ

1/2
2 − ϑ1/2

1 ϑ
1/2
2 )

(iii)ΦB = ( 2
√

1− (1− µ2)Φ, ϑΦ)

(iv) BΦ = (µΦ, 2

√
1− (1−

√
ϑ)Φ
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3 Operation of Pythagorean Fuzzy Set

Definition 3.1. Let B = [µ, ϑ],B1 = [µ1, ϑ1],B2 = [µ2, ϑ2] be the Pythagorean fuzzy
sets, then[2]
(i) Intersection:
B1 ∧ B2 = min(µ1, µ2),max(ϑ1, ϑ2)

(ii)Union:
B1 ∨ B2 = max(µ1, µ2),min(ϑ1, ϑ2)

(iii) Complement
(BC = [(µ)4, ϑ]

Note that [ϑ2 + µ2] = (ϑ)2 + µ2

= (0.6)2 + (0.5)2 = 0.61 < 1
so, (B)C is a Pythagorean fuzzy set.
We know that ,
(BC)C = (ϑ2, µ(y))C = (µ, ϑ) = B.

Example 3.2. Let Assume that B1 = (µ1 = 0.57, ϑ1 = 0.43)andB2 = (µ2 =
0.47, ϑ2 = 0.56) are the Pythagorean fuzzy sets , then

(i) B1 ∧ B2 = min(µ1, µ2),max(ϑ1, ϑ2

= (min(.57, .47), max(.43, .56))

= (.47,.56)

(ii) B1 ∨ B2 = min(µ1, µ2),max(ϑ1, ϑ2)

= (max(.57, .47), min(.43, .56))

=(.57, .43)

(iii)(B)C = [(µ)2, ϑ2]2

=((.32)4), (.54)4)

=(.010,.085)

Definition 3.3. Score Function Let HB = (µB, ϑB) be the PFS then the score func-
tion is written as H(B) = µ2

B − (ϑ2
B) ......(I) and noted that S(B) ∈ [-1,1]
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Example: Let B = [0.7, 0.6]be the PFS then H(B) = 0.7− 0.6 = 0.13

Definition 3.4. Accuracy Function Let B = (µB, ϑB) be the PFS then the score
function is written as A(B) = µ2

B + ϑ2
B and noted that A(B)[0, 1]

Example: Let B = [0.4, 0.8]be the PFS then A(B) = 0.7 + 0.6 = 0.85

Theorem 3.5. For three pythagorean fuzzy number B, B1,B2 and B2 and Φ1,Φ2 ¿0
following are valid

(i) B1 ∧ B2 = B2 ∧ B1 (ii)B1 ∨ B2 = B2 ∨ B1

(iii)B1 ∧ (B2 ∧ B2) = (B1 ∧ B2) ∧ B2 (iv)B1 ∨ (B2 ∨ B2) = (B1 ∨ B2) ∨ B2

(v) Φ(B1 ∨ B2) = ΦB1 ∨ ΦB2 (iv)(B1 ∨ B2)Φ = (B1)Φ ∨ (B2)Φ

Proof:

(i) B1 ∧ B2 = min(µ1, µ2),max(ϑ1, ϑ2)

=min(µ2, µ1),max(ϑ2, ϑ1)

=B2 ∧ B1

(ii) B1 ∨ B2 = max(µ1, µ2),min(ϑ1, ϑ2)

=max(µ2, µ1),min(ϑ2, ϑ1)

=B2 ∨ B1

(iii)B1 ∧ (B2 ∧ B2) = B1 ∧ (min(µ2, µ2),max(ϑ2, ϑ2)

=min(µ1, (min(µ2, µ3))),max(ϑ1, (max(ϑ2, ϑ3)))

=min((µ1, µ2),minµ3), (max(ϑ1, ϑ2),maxϑ3))

=(min(µ1, µ2),max(ϑ1, ϑ2) ∧ B3
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=(B1 ∧ B2) ∧ B3

(iv)B1 ∨ (B2 ∨ B3) = B1 ∨ (max(µ2(y), µ3(y)),min(ϑ2(y), ϑ3(y))

=max(µ1, (max(µ2(y), µ3(y)))),min(ϑ1, (min(ϑ2(y), ϑ3(y))))

=max((µ1, µ2(y)),maxµ3(y)), (min(ϑ1, ϑ2(y)),minϑ3(y)))

=(max(µ1(y), µ2(y)),min(ϑ1(y), ϑ2(y)) ∨ B3

= (B1 ∨ B2) ∨ B3

(v) Φ(B1 ∨ B2) = Φ(max(µ1(y), µ2(y)),min(ϑ1(y), ϑ2(y)))

= ( 2
√

1− (1−max(µ2
1, µ

2
2)Φ),min(ϑΦ

1 , ϑ
Φ
2 ))

ΦB1 ∨ ΦB2 = ( 2
√

1− (1− µ2
1)Φ, ϑΦ

1 ) ∨ ( 2
√

1− (1− µ2
2)Φ, ϑΦ

2 )

=max( 2
√

1− (1− µ2
1)Φ, 2

√
1− (1− µ2

2)Φ,min(ϑΦ
1 , ϑ

Φ
2 ))

=( 2
√

1− (1−max(µ2
1), µ2

2)Φ,min(ϑΦ
1 , ϑ

Φ
2 ))

=Φ(B1 ∨ B2)

Theorem 3.6. For two pythagorean fuzzy number B1 = (µ1, ϑ1),B2 = (µ2, ϑ2)
following are valid
(i) (B1 ∧ B2) ∨ B2 = B2

(ii) (B1 ∨ B2) ∧ B2 = B2

proof:
(i) (B1 ∧ B2) ∨ B2 = (min(µ1, µ2),max(ϑ1, ϑ2) ∨ (µ2, ϑ2)

= (max(min(µ1, µ2), µ2),min(max(ϑ1, ϑ2), ϑ2))
= (µ2, ϑ2)
= B2

(ii) (B1 ∨ B2) ∧ B2 = (max(µ1, µ2),min(ϑ1, ϑ2)) ∧ (µ2, ϑ2)
= (min(max(µ1, µ2), µ2),max(min(ϑ1, ϑ2), ϑ2))
= (µ2, ϑ2)
= B2

Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055  
Vol. 47 No. 1 (2026)
_________________________________________________________________________________________________________________________ 

585



Aggregation of Pythagorean Fuzzy Set[6]

Definition 3.7. Let Bz = (µBz, ϑBz) (z =1 to n) be the Pythagorean Fuzzy Set and
τ = (τ1, τ2, ...τn)T be the weight vector of Bz with

∑n
z=1 τ = 1. Then a (PFWA) is a

function PFWA: Bn → B, where
PFWA (B1,B2,B3, ...,Bn) = [

∑n
z=1 τzµz,

∑n
z=1 τzϑz]......(1)

Definition 3.8. Let Bz = (µBz, ϑBz) (z =1 to n) be the Pythagorean Fuzzy Set and
τ = (τ1, τ2, ...τn)T be the weight vector of Bz with

∑n
z=1 τ = 1. Then a (PFWG) is

a function PFWG: Bn → B, where
PFWG (B1,B2,B3, ...,Bn) = [

∏n
z=1 µ

τz
z ,

∏n
z=1 ϑ

τz
z ]......(2)

Definition 3.9. Let Bz = (µBz, ϑBz) (z =1 to n) be the Pythagorean Fuzzy Set and
τ = (τ1, τ2, ...τn)T be the weight vector of Bz with

∑n
z=1 τ = 1. Then a (PFWPA) is

a function PFWPA: Bn → B, where
PFWPA (B1,B2,B3, ...,Bn) = [(

∑n
z=1 τzµ

2
z), (

∑n
z=1 τzϑ

2
z)]......(3)

Definition 3.10. Let Bz = (µBz, ϑBz) (z =1 to n) be the Pythagorean Fuzzy Set and
τ = (τ1, τ2, ...τn)T be the weight vector of Bz with

∑n
z=1 τ = 1. Then a (PFWPG) is

a function PFWPG: Bn → B, where
PFWPG (B1,B2,B3, ...,Bn) = [((1−

∏n
z=1 µ

2
z)
τz), ((1−

∏n
z=1 ϑ

2
z)
τz)]......(4)

Example 3.11. Let B1 =(0.5,0.2),B2=(0.6,0.7), B3=(0.5,0.9) be three PFS and
assume that τ=( 0.2, 0.4, 0.4)T is weight vector of Bz (z=1 to n), then

(1)PFWA (B1,B2,B3, ...,Bn) = [
∑n

z=1 τzµz,
∑n

z=1 τzϑz]
= (0.5× 0.2 + 0.6× 0.4 + 0.5× 0.4), (0.2× 0.2 + 0.7× 0.4 + 0.5× 0.4)

= (0.64, 0.6)
(2)PFWG (B1,B2,B2, ...,Bn) = [

∏n
z=1 µ

τz
z ,

∏n
z=1 ϑ

τz
z ]

= (0.5× 0.2× 0.6× 0.4× 0.5× 0.6), (0.2× 0.2× 0.7× 0.4× 0.9× 0.6)
= (0.46,0.58)
(3)PFWPA (B1,B2,B3, ...,Bn) = [(

∑n
z=1 τzµz)

2, (
∑n

z=1 τzϑz)
2]

= (0.2× 0.52 + 0.4× 0.42 + 0.4× 0.52)2, (0.2× 0.22 + 0.4× 0.72 + 0.4× 0.92)2

= (0.0457, 0.36)
(4)PFWPG (B1,B2,B3, ...,Bn) = [((1−

∏n
z=1 µ

2
z)
τz), ((1−

∏n
z=1 ϑ

2
z)
τz)]

= ((1− (1− 0.5))0.2(1− (1− 0.6))0.4(1− (1− 0.5))0.4)2,

((1− (1− (0.2)0.2((1− (1− 0.7)0.4((1− (1− (0.9))0.4)

=(0.013, 0.486)
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Theorem 3.12. Let Bz = (µBz, ϑBz) (z =1 to n) be the Pythagorean Fuzzy Set and
τ = (τ1, τ2, ...τn)T be the weight vector of Bz with τz > 0 and

∑n
z=1 τz = 1. Then a

(PFWA) is a function PFWPA: Bn → B, where
PFWA (B1,B2,B3, ...,Bn) =is an PFS.
Proof:
For any PFS Bz = (µBz, ϑBz), we have 0 ≤ µ2

Bz ≤ 1, 0 ≤ 2
√
ϑBz ≤ 1

0 ≤ µ2
Bz + ϑ2

Bz ≤ 1
Then , we given that

0 ≤ τ1µ
2
B1 + τ1ϑ

2
B1 ≤ τ1,

0 ≤ τ2µ
2
B2 + τ2 + ϑ2

B2 ≤ τ2,
...................................,
0 ≤ τnµ

2
Bn + τnϑ

2
Bn ≤ τn

And also,
0(≤ τ1µ

2
B1 + τ1ϑ

2
B1) + (τ2µ

2
B2 + τ2ϑ

2
B2) + ....+ (τnµ

2
Bn + τnϑ

2
Bn) ≤ (τ1 + τ2 + ....+ τn)

0 ≤
∑n

z=1 τzµ
2
Bz +

∑n
z=1 τzϑ

2
Bz ≤

∑n
z=1 τz = 1

Therefore
0 ≤ ((

∑n
z=1 τzµ

2
Bz)

2 + ((
∑n

z=1 τzϑ
2
Bz)

2) ≤
∑n

z=1 τz = 1
=

∑n
z=1 τzµ

2
Bz +

∑n
z=1 τzϑ

2
Bz = 1

it is obvious that,
0 ≤ ((

∑n
z=1 τzµ

2
Bz)) ≤ 1, 0 ≤ ((

∑n
z=1 τzϑBz)

2) ≤ 1
Then PFWPA (B1,B2,B3, ...,Bn) =is an PFS.

Theorem 3.13. Let Bz = (µBz , ϑBz) (z =1 to n) and B = (µB, ϑB) be the Pythagorean
Fuzzy Sets and τ = (τ1, τ2, ...τn)T be the weight vector of Bz with

∑n
z=1 τz = 1. Then

a PFWPA (B1

⊕
B2

⊕
B3

⊕
...
⊕
Bn

⊕
B) ≥PFWPA (B1,B2,B3, ....,Bn)

⊗
B.

Proof:
Let Bz = (µBz , ϑBz) (z =1 to n) and B = (µB, ϑB) be the Pythagorean Fuzzy Sets, we
have
[
∑n

z=1 τz(µ
2
Bz + µ2

B − µ2
Bzµ

2
B)] ≥ [

∑n
z=1 τzµ

2
Bzµ

2
B]2 = (

∑n
z=1 τzµ

2
Bz)

2µB
[
∑n

z=1 τz(ϑ
2
Bz + ϑ2

B − ϑ2
Bzϑ

2
B)] ≥ [

∑n
z=1 τzϑ

2
Bzϑ

2
B]2 =

∑n
z=1 τzϑ

2
Bzµ

2
B

We have,
PFPA (B1

⊕
B2

⊕
B3

⊕
...
⊕
Bn

⊕
B) = ([

∑n
z=1 τz(µ

2
Bz+µ

2
B−µ2

Bzµ
2
B)], [

∑n
z=1 τzϑ

2
Bzϑ

2
B])

PFWPA (B1,B2,B3, ....,Bn)
⊗
B = ((

∑n
z=1 τzµ

2
Bz)), (

∑n
z=1 τzϑ

2
Bz)))

⊗
(µB, ϑB)
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=((
∑n

z=1 τzµ
2
Bz)µ

2
B, ϑ

2
Bz + ϑ2

B − ϑBzϑB))
It follows that
PFWPA (B1

⊕
B2

⊕
B3

⊕
...
⊕
Bn

⊕
B) ≥ PFWPA (B1,B2,B3, ....,Bn)

⊗
B.

Theorem 3.14. (Boundedness)
Suppose that µ∗B = min1≤z≤n(µBz), µ

ε
B = max1≤z≤n(µBz), ϑ

∗
B = min1≤z≤n(ϑBz), ϑ

ε
B =

max1≤z≤n(ϑBz) then (µ∗B, ϑ
ε
B) ≤ CBFWPA(B1,B2,B3, ....,Bn) ≤ (µεB, ϑ

∗
B).

Proof: For any Bz = (µBz , ϑBz)(z= 1 to n),
We have µ∗B ≤ µBz ≤ µεB and ϑεB ≤ ϑBz ≤ ϑ∗B
The inequatities for MD value are
µ∗B = [

∑n
z=1 τzµ

∗2
Bz ]

2 ≤ [
∑n

z=1 τzµ
2
Bz ]

2 ≤ [
∑n

z=1 τzµ
ε2
Bz ]

2 = µεB
Similarly for NMD value are
ϑ∗B = [

∑n
z=1 τzϑ

∗
Bz ] ≤ [

∑n
z=1 τzϑ

2
Bz ]

2 ≤ [
∑n

z=1 τzϑ
ε
Bz ] = ϑεB

Hence PFWPA (B1,B2,B3, ....,Bn) ≤ (µεB, ϑ
∗
B).

Theorem 3.15. (Monotonicity)
Let BZ = (µBZ , ϑBZ ) and EZ = (µEZ , ϑEZ )(z= 1 to n) be the two PFS. If µBZ ≤ µEZ
and ϑBZ ≤ ϑEZ then,
PFWPA (B1,B2,B3, ....,Bn) ≤ PFWPA (E1, E2, E3, , ...., En, )
Proof:
For all z, we have,
µBZ ≤ µEZ and ϑBZ ≤ ϑEZ then [

∑n
z=1 τZµ

2
BZ ] ≤ [

∑n
z=1 τZµ

2
EZ ] and

[
∑n

z=1 τZϑ
2
BZ ] ≤ [

∑n
z=1 τZϑ

2
EZ ,]

Therefore
PFWPA (B1,B2,B3, ....,Bn) ≤ ([

∑n
z=1 τZµ

2
BZ ], [

∑n
z=1 τZϑ

2
BZ ])

≤ ([
∑n

z=1 τZµ
2
EZ ,], [

∑n
z=1 τzϑEZ ]2)

=PFWPA (E1, E2, E3, ...., En)
Hence FWPA (B1,B2,B3, ....,Bn) ≤ PFWPA (E1, E2, E3, , ...., En, )

Theorem 3.16. (Idempotency)
Let BZ = (µBZ , ϑBZ ) (z= 1 to n) than Fuzzy Sets such that BZ = B = (µB, ϑB) and
τ = (τ1, τ2, ....., τn)T be the weight vectors of Bz with then PFWPA (B1,B2,B3, ....,Bn) =
B
Proof:
Since BZ = B = (µB, ϑB)(z= 1 to n) then
PFWPA (B1,B2,B3, ....,Bn) = ([

∑n
z=1 τzµ

2
Bz], [

∑n
z=1 τzϑ

2
Bz ])

= ([
∑n

z=1 τzµ
2
B]2, [

∑n
z=1 τzϑB]2)

=(µB, ϑB)
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= B
Hence PFWPA (B1,B2,B3, ....,Bn) = B

4 MCDM Problems entropy using Aggregation Op-

erators in Pythagorean Fuzzy Set

Algorithm:

Step:1
Consider E1, E2, E3..., En be alternatives and G1,G2,G3, ,Gn be the criteria. Suppose
that the pythagorean fuzzy sets BL = (µL, ϑL), (L = 1 to n) where µL represent the
Membership Degree of the alternative EL (L=1 to n)for the criteriaGL (L=1 to n)
.similarly, ϑL represent the Non-Membership Degree of the alternative EL (L= 1 to
n) for the criteria GL (L=1 to n).

Step 2:
Pythagorean fuzzy set are used to assign weight Wi(i = 1, 2, 3, .., n) to different

criteria for a set of group.
Step: 3
Calculate the Pythagorean values using the Aggregation Operators (equation

(1),(2), (3), (4)) .
Step: 4
Calculate the Score values using the formula (equation (I)).
Step:5 Determine the alternative is smaller . As a output, the rank the alterna-

tive in descending order.

Numerical Example

To illustrate the applicability of the proposed methodology, a faculty recruitment 
problem is considered. Four candidates are evaluated based on multiple criteria such 
as communication skills, experience, speaking ability, computer knowledge, and pro-
fessional competence. The assessments are expressed using Pythagorean fuzzy num-

bers to capture uncertainty and hesitation in expert judgements. (E1, E2, E3, ..., 
En) . Consider a set of criteria G1, G2,G3, ...., Gn the criteria stands for 
Communication , Experience , Good speaking and Computer knowledge 
respectively.
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Step 1: Construct that the alternatives corresponding to each criteria is given
in the form of Pythagorean Fuzzy Set

E1 E2 E3 E4

G1 [0.6, 0.3] [0.4, 0.3] [0.4, 0.6] [0.5, 0.3]
G2 [0.5, 0.4] [0.2, 0.6] [0.5, 0.4] [0.3, 0.6]
G3 [0.4, 0.7] [0.8, 0.2] [0.3, 0.7] [0.4, 0.3]
G4 [0.6, 0.4] [0.4, 0.5] [0.3, 0.6] [0.4, 0.3]


Step:2

Suppose that we take the weight τk(L = 1,2,3,4,5) in the form of Pythagorean
Fuzzy set with τz > 0 and

∑n
z=1 τz = 1 , weight τ1 = 0.14, τ2 = 0.22, τ3 = 0.37

τ4 = 0.03 and τ5 = 0.24 .

Step:3 Calculate the PFS values using the Aggregation Operators (equation
(1),(2), (3), (4)), as shows in the table.

E1 E2 E3 E4

PFWA [0.398, 0.423] [0.398, 0.48] [0.483, 0.05] [0.397, 0.31]
PFWG [0.449, 0.398] [0.372, 0.470] [0.445, 0.424] [0.383, 0.471]
PFWPA [0.045, 0.040] [0.030, 0.057] [0.074, 0.096] [0.019, 0.062]
PFWPG [0.480, 0.467] [0.354, 0.508] [0.376, 0.505] [0.447, 0.393]


Step:4 Determine the Score values using the formula (equation (I)) , as shows in

the table
E1 E2 E3 E4

PFWA [0.0249] [0.0237] [0.0007] [0.00074]
PFWG [0.0445] [0.0249] [0.0027] [0.0005]
PFWPA [0.1] [0.1131] [0.012] [0.0032]
PFWPG [0.1155] [0.1584] [0.0024] [0.0015]


Step:5

The alternative can be calculate based on their smallar distance of above table are
generated.

PFWA E2 > E1 > E3 > E4

PFWG E2 > E1 > E3 > E4

PFWPA E2 > E1 > E3 > E4

PFWPG E2 > E1 > E3 > E4

The Pythagorean fuzzy decision matrix is constructed, criteria weights are as-
signed, and aggregation operators are applied. The score function is then used to
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rank the candidates. The results obtained from all aggregation operators consis-
tently identify as the most suitable candidate, demonstrating the effectiveness and
robustness of the proposed approach.

Along these results we find out the E2 is the best candidate when compared with
other candidates.

5 Conclusions

In this study, a collection of operators, including the union, intersection, Pythagorean
Fuzzy Weighted Average (PFWA) operator, Pythagorean Fuzzy Weighted Geometric
(PFWG) operator, Pythagorean Fuzzy Weighted Power Average (PFWPA) operator,
and Pythagorean Fuzzy Weighted Power Geometric (PFWPG) operator, has been
examined and analyzed for the class of B fuzzy sets, together with proofs of their
essential properties. A multi-criteria decision-making (MCDM) framework is adopted
to solve decision-making problems based on B fuzzy set operators and to effectively
assess the significance of the derived results. As a direction for future work, the
proposed method will be expanded by applying Pythagorean fuzzy sets to various
application areas in order to further demonstrate its validity and effectiveness.
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