

REGULARITY IN PYTHAGOREAN FUZZY NANO TOPOLOGICAL SPACES
VIA DELTA BETA -OPEN SETS

K. BALASUBRAMANIYAN ¹AND K. NIJANTHAN ²

¹Department of Mathematics, Arignar Anna Government Arts College,
Attur - 636 121, India.

^{1,2}Department of Mathematics, Annamalai University, Annamalai Nagar -
608 002, India.

Abstract

In this paper, we introduce Pythagorean fuzzy nano regular spaces and their variants— δ -, δ -pre-, δ -semi-, $\delta\alpha$ -, and $\delta\beta$ -regular spaces—defined via Pythagorean fuzzy nano δ -type open sets in Pythagorean fuzzy nano topological spaces. We also define the corresponding strongly Pythagorean fuzzy nano regular spaces. Furthermore, we examine interrelationships among these spaces, their connections to existing topological structures, and fundamental properties with characterizations.

1. Introduction

The concept of fuzzy sets, first introduced by Zadeh in 1965 [23], has found wide-ranging applications in fields such as decision theory, artificial intelligence, operations research, expert systems, computer science, data analytics, pattern recognition, management science, and robotics. In 1968, Chang and Warren [8, 20] extended this concept by introducing fuzzy topological spaces (FTS), incorporating fundamental topological notions such as open and closed sets, neighborhoods, interiors, closures, continuity,

and compactness. Subsequent studies further explored the applications of fuzzy sets across various domains. Over time, numerous specialized fuzzy topological structures have been developed to address specific theoretical and practical needs.

In 1997, Dogan Coker [6] introduced the concept of intuitionistic fuzzy topological spaces and explored their properties related to compactness and continuity. Building upon intuitionistic fuzzy sets—“which account for both membership and non-membership degrees”—Pythagorean fuzzy sets (PFS) have gained attention due to their broader applicability. While both set types incorporate membership (μ) and non-membership (λ) degrees, their constraints differ: intuitionistic fuzzy sets satisfy $\mu + \lambda \leq 1$, whereas Pythagorean fuzzy sets satisfy $\mu^2 + \lambda^2 \leq 1$.

To offer greater flexibility in uncertainty modeling, Yager [22] introduced non-standard fuzzy sets in 2013, comparing them with intuitionistic fuzzy sets and proposing the Pythagorean fuzzy set (PFS) as an effective model in decision-making scenarios. PFS has since been applied in areas such as job placement based on academic performance [12] and mask selection during the COVID-19 pandemic using the Pythagorean TOPSIS technique [14].

Subsequently, Murat et al. [11] extended the fuzzy topological framework by developing Pythagorean fuzzy topological spaces (PFTS), inspired by classical fuzzy topological spaces (FTS), and defined Pythagorean fuzzy continuous functions between such spaces.

In 2020, Ajay and Joseline Charisma [2, 3] introduced the concept of Pythagorean fuzzy nano topology respective interior, closure and continuous maps in Pythagorean fuzzy nano topological spaces. Recently, Balasubramaniyan et. al. [7] introduced the concept of Pythagorean fuzzy nano δ open and closed sets, Deivanaiyagai et. al. [10] introduced the concept of some stronger and weaker forms of open maps in Pythagorean

fuzzy nano topological spaces.

In parallel developments, Saha [15] introduced the concept of δ -open sets in fuzzy topological spaces. This concept was further extended in 2019 by Acikgoz and Esenbel [1], who introduced neutrosophic soft δ -topologies. Further contributions were made by Aranganayagi et al., Surendra et al., and Vadivel et al. [4, 5, 16, 17, 18, 19], who investigated δ -open sets in neutrosophic, neutrosophic soft, neutrosophic hypersoft, and neutrosophic nano topological spaces, particularly focusing on their mappings and separation axioms.

Similarity measures have emerged as essential tools for quantifying vagueness and evaluating the closeness between fuzzy sets. In this context, Zhang [9] proposed similarity-based techniques for Pythagorean fuzzy multi-attribute decision-making. Peng et al. [13] introduced several new distance and similarity measures aimed at solving problems in pattern recognition, medical diagnosis, and clustering analysis, also examining their transformation properties. Wei and Wei [21] further developed cosine-based similarity functions for decision-making applications.

However, several existing PFS similarity and distance measures suffer from limitations such as division-by-zero issues, inability to distinguish between positive and negative differences, and non-compliance with core axioms (e.g., the third and fourth similarity axioms). These counter-intuitive behaviors [21, 9, 13] hinder the decision-maker's (DM's) ability to identify optimal or convincing alternatives.

The objective of this paper is to address these challenges by proposing a novel similarity measure for Pythagorean fuzzy sets that overcomes these counter-intuitive limitations and provides a more robust decision-making tool.

Research Gap: To date, no studies have been reported in the literature on Pythagorean fuzzy nano topological spaces that investigate newly defined spaces such as Pythagorean fuzzy nano $\delta\beta$ -regular spaces and strongly Pythagorean fuzzy nano $\delta\beta$ -regular spaces.

In this paper, we introduce Pythagorean fuzzy nano regular spaces, including their variants— δ , δ pre, δ semi, $\delta\alpha$ and $\delta\beta$ -regular spaces—as well as their corresponding strongly Pythagorean fuzzy nano δ -type regular spaces. We explore and analyze their fundamental properties within the framework of Pythagorean fuzzy nano topological spaces (PFNts's).

2. Pythagorean Fuzzy nano (resp. δ , δ pre, δ semi, $\delta\alpha$ and $\delta\beta$) regular spaces

In this section, we extend the study of Pythagorean fuzzy nano topological spaces by introducing Pythagorean fuzzy nano regular spaces, along with their variants—namely δ , δ pre, δ semi, $\delta\alpha$ and $\delta\beta$ -regular spaces. These spaces are defined using the corresponding types of Pythagorean fuzzy nano open and closed sets.

Definition 2.1 Let $(U, \tau_p(F))$ be a PFNts is said to be Pythagorean fuzzy nano (resp. δ , δ pre, δ semi, $\delta\alpha$ and $\delta\beta$) regular (briefly, PFNReg (resp. $\text{PFN}\delta\text{Reg}$, $\text{PFN}\delta\text{PReg}$, $\text{PFN}\delta\text{SReg}$, $\text{PFN}\delta\alpha\text{Reg}$ and $\text{PFN}\delta\beta\text{Reg}$)) if for each PFNc (resp. $\text{PFN}\delta\text{c}$, $\text{PFN}\delta\text{Pc}$, $\text{PFN}\delta\text{Sc}$, $\text{PFN}\delta\alpha\text{c}$ and $\text{PFN}\delta\beta\text{c}$) set A and a point $x_\alpha \in A$, there exist disjoint $\text{PFN}\delta\text{o}$ (resp. $\text{PFN}\delta\text{o}$, $\text{PFN}\delta\text{Po}$, $\text{PFN}\delta\text{So}$, $\text{PFN}\delta\alpha\text{o}$ and $\text{PFN}\delta\beta\text{o}$) sets L and M such that $A \subseteq L$, $x_\alpha \in M$.

Theorem 2.1 In a PFNts $(U, \tau_p(F))$, the following are equivalent:

- (i). U is $\text{PFN}\delta\beta\text{Reg}$.

On Regular Spaces in the Framework of Pythagorean Fuzzy Nano $\delta\beta$ -open Sets 5

(ii). For every $x_a \in U$ and every $\text{PFN}\delta\beta\alpha$ set G containing x_a , there exists a $\text{PFN}\delta\beta\alpha$ set L such that $x_a \in L \subseteq \text{PFN}\delta\beta\text{cl}(L) \subseteq G$.

(iii). For every $\text{PFN}\delta\beta\alpha$ set F , the intersection of all $\text{PFN}\delta\beta\alpha$ set, $\text{PFN}\delta\beta q\text{-nbhd}$ of F is exactly F .

(iv). For any Pythagorean fuzzy set A and a $\text{PFN}\delta\beta\alpha$ set B such that $A \cap B \neq 0_p$, there exists a $\text{PFN}\delta\beta\alpha$ set L such that $A \cap L \neq 0_p$ and $\text{PFN}\delta\beta\text{cl}(L) \subseteq B$.

(v). For every non-empty Pythagorean fuzzy set A and $\text{PFN}\delta\beta\alpha$ set B such that $A \cap B = 0_p$, there exist disjoint $\text{PFN}\delta\beta\alpha$ sets L and M such that $A \cap L \neq 0_p$ and $B \subseteq M$.

Proof. (i) \Rightarrow (ii): Suppose U is $\text{PFN}\delta\beta\text{Reg}$. Let $x_a \in U$ and let G be a $\text{PFN}\delta\beta\alpha$ set containing x_a . Then $x_a \in G^c$ and G^c is $\text{PFN}\delta\beta\alpha$ set. Since U is $\text{PFN}\delta\beta\text{Reg}$, there exist $\text{PFN}\delta\beta\alpha$ sets L and M such that $L \cap M = 0_p$ and $x_a \in L$, $G^c \subseteq M$. It follows that $L \subseteq M^c \subseteq G$ and hence $\text{PFN}\delta\beta\text{cl}(L) \subseteq \text{PFN}\delta\beta\text{cl}(M^c) = M^c \subseteq G$. That is $x_a \in L \subseteq \text{PFN}\delta\beta\text{cl}(L) \subseteq G$.

(ii) \Rightarrow (iii): Let F be any $\text{PFN}\delta\beta\alpha$ set and $x_a \notin F$. Then F^c is $\text{PFN}\delta\beta\alpha$ set and $x_a \in F^c$. By assumption, there exists a $\text{PFN}\delta\beta\alpha$ set L such that $x_a \in L \subseteq \text{PFN}\delta\beta\text{cl}(L) \subseteq F^c$. Thus $F \subseteq (\text{PFN}\delta\beta\text{cl}(L))^c \subseteq L^c$. Now L^c is $\text{PFN}\delta\beta\alpha$ set, $\text{PFN}\delta\beta q\text{-nbhd}$ of F which does not contain x_a . So, we get the intersection of all $\text{PFN}\delta\beta\alpha$ sets, $\text{PFN}\delta\beta q\text{-nbhd}$ of F is exactly F .

(iii) \Rightarrow (iv): Suppose $A \cap B \neq 0_p$ and B is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta o$ set. Let $x_a \in A \cap B$.

Since B is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta o$ set, B^c is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta c$ set and $x_a \in B^c$. By using (iii), there exists a $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta c$ set, $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta q$ -nbhd M of B^c such that $x_a \in M$. Now for the $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta q$ -nbhd M of B^c there exists a $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta o$ set G such that $B^c \subseteq G \subseteq M$. Take $L = M^c$. Thus L is a $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta o$ set containing x_a . Also $A \cap L \neq 0_p$ and $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta cl(L) \subseteq G^c \subseteq B$.

(iv) \Rightarrow (v): Suppose A is a non-empty set and B is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta c$ set such that $A \cap B = 0_p$. Then B^c is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta o$ set and $A \cap (B^c) \neq 0_p$. By our assumption, there exists a $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta o$ set L such that $A \cap L \neq 0_p$, and $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta cl(L) \subseteq B^c$. Take $M = (\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta cl(L))^c$. Since $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta cl(L)$ is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta c$ set, M is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta o$ set. Also $B \subseteq M$ and $L \cap M \subseteq \mathcal{P}\mathcal{F}\mathcal{N}\delta\beta cl(L) \cap (\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta cl(L))^c = 0_p$.

(v) \Rightarrow (i): Let S be $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta c$ set and $x_a \in S$. Then $S \cap \{x_a\} = 0_p$. By (v), there exist disjoint $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta o$ sets L and M such that $L \cap \{x_a\} \neq 0_p$ and $S \subseteq M$. That is L and M are disjoint $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta o$ sets containing x_a and S respectively. This proves that $(U, \tau_p(F))$ is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta Reg$.

Corollary 2.1 *In a $\mathcal{P}\mathcal{F}\mathcal{N}ts$ $(U, \tau_p(F))$, the following are equivalent:*

1. U is $\mathcal{P}\mathcal{F}\mathcal{N}Reg$.
2. For every $x_a \in U$ and every $\mathcal{P}\mathcal{F}\mathcal{N}o$ set G containing x_a , there exists a $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta o$ set L such that $x_a \in L \subseteq \mathcal{P}\mathcal{F}\mathcal{N}\delta\beta cl(L) \subseteq G$.
3. For every $\mathcal{P}\mathcal{F}\mathcal{N}c$ set F , the intersection of all $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta c$ set, $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta q$ -

nbhd of F is exactly F .

4. For any Pythagorean fuzzy set A and a PFMts set B such that $A \cap B \neq 0_p$, there exists a $\text{PFM}\beta\text{o}$ set L such that $A \cap L \neq 0_p$ and $\text{PFM}\beta\text{cl}(L) \subseteq B$.

5. For every non-empty Pythagorean fuzzy set A and PFMts set B such that $A \cap B = 0_p$, there exist disjoint $\text{PFM}\beta\text{o}$ sets L and M such that $A \cap L \neq 0_p$ and $B \subseteq M$.

Theorem 2.2 A PFMts $(U, \tau_p(F))$ is $\text{PFM}\beta\text{Reg}$ if and only if every $x_a \in U$ and every $\text{PFM}\beta\text{q-nbhd}$ N containing x_a , there exists a $\text{PFM}\beta\text{o}$ set M such that $x_a \in M \subseteq \text{PFM}\beta\text{cl}(M) \subseteq N$.

Proof. Let U be a $\text{PFM}\beta\text{Reg}$ space. Let N be any $\text{PFM}\beta\text{q-nbhd}$ of x_a . Then there exists a $\text{PFM}\beta\text{o}$ set G such that $x_a \in G \subseteq N$. Since G^c is $\text{PFM}\beta\text{c}$ set and $x_a \in G^c$, by definition there exist $\text{PFM}\beta\text{o}$ sets L and M such that $G^c \subseteq L$ and $x_a \in M$ and $L \cap M = 0_p$ so that $M \subseteq L^c$. It follows that $\text{PFM}\beta\text{cl}(M) \subseteq \text{PFM}\beta\text{cl}(L^c) = L^c$. Also $G^c \subseteq L$ implies $L^c \subseteq G \subseteq N$. Hence $x_a \in M \subseteq \text{PFM}\beta\text{cl}(M) \subseteq N$. Conversely, suppose for every $x_a \in U$ and every $\text{PFM}\beta\text{q-nbhd}$ N containing x_a , there exists a $\text{PFM}\beta\text{o}$ set M such that $x_a \in M \subseteq \text{PFM}\beta\text{cl}(M) \subseteq N$. Let F be any $\text{PFM}\beta\text{c}$ set and $x_a \in F$. Then $x_a \in F^c$. Since F^c is $\text{PFM}\beta\text{o}$ set, F^c is $\text{PFM}\beta\text{q-nbhd}$ containing x_a . By hypothesis there exists a $\text{PFM}\beta\text{o}$ set M such that $x_a \in M$ and $\text{PFM}\beta\text{cl}(M) \subseteq F^c$. This implies that, $F \subseteq (\text{PFM}\beta\text{cl}(M))^c$. Then $(\text{PFM}\beta\text{cl}(M))^c$ is a $\text{PFM}\beta\text{o}$ set

containing F . Also $M \cap (PFN\delta\beta cl(M))^c = 0_p$. Hence the space is $PFN\delta\beta Reg$.

Theorem 2.3 A $PFNts$ $(U, \tau_p(F))$ is $PFN\delta\beta Reg$ if and only if for each $PFN\delta\beta c$ set F of U and each $x_a \in F^c$, there exist $PFN\delta\beta o$ sets L and M of U such that $x_a \in L$ and $F \subseteq M$ and $PFN\delta\beta cl(L) \cap PFN\delta\beta cl(M) = 0_p$.

Proof. Suppose U is $PFN\delta\beta Reg$ space. Let F be a $PFN\delta\beta c$ set in U and $x_a \in F$. Then there exist $PFN\delta\beta o$ sets $L(x_a)$ and M such that $x_a \in L(x_a)$, $F \subseteq M$ and $L(x_a) \cap M = 0_p$. This implies that $L(x_a) \cap PFN\delta\beta cl(M) = 0_p$. Also $PFN\delta\beta cl(M)$ is a $PFN\delta\beta c$ set and $x_a \in PFN\delta\beta cl(M)$. Since U is $PFN\delta\beta Reg$, there exist $PFN\delta\beta o$ sets G and H of U such that $x_a \in G$, $PFN\delta\beta cl(M) \subseteq H$ and $G \cap H = 0_p$.

This implies $PFN\delta\beta cl(G) \cap H \subseteq PFN\delta\beta cl(H^c) \cap H = (H^c) \cap H = 0_p$. Take $L = G$. Now L and M are $PFN\delta\beta o$ sets in U such that $x_a \in L$ and $F \subseteq M$. Also $PFN\delta\beta cl(L) \cap PFN\delta\beta cl(M) \subseteq PFN\delta\beta cl(G) \cap H = 0_p$.

Conversely, suppose for each $PFN\delta\beta c$ set F of U and each $x_a \in F^c$, there exist $PFN\delta\beta o$ sets L and M of U such that $x_a \in L$ and $F \subseteq M$ and $PFN\delta\beta cl(L) \cap PFN\delta\beta cl(M) = 0_p$.

Now $L \cap M \subseteq PFN\delta\beta cl(L) \cap PFN\delta\beta cl(M) = 0_p$. Therefore $L \cap M = 0_p$. This proves that U is $PFN\delta\beta Reg$.

Theorem 2.4 Let $(U_1, \tau_p(F_1))$ and $(U_2, \tau_p(F_2))$ be two $PFNts$'s. And let $h_p: U_1 \rightarrow U_2$ be a bijective function. If h_p is $PFN\delta\beta Irr$, $PFN\delta\beta O$ and U_1 is

$\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{Reg}$, then \mathbf{U}_2 is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{Reg}$.

Proof. Suppose \mathbf{U}_1 is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{Reg}$. Let S be any $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{c}$ set in \mathbf{U}_2 such that $y_\beta \in S$. Since h_p is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\text{Irr}$, $h_p^{-1}(S)$ is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{c}$ set in \mathbf{U}_1 . Since h_p is onto, there exists $x_\alpha \in \mathbf{U}_1$ such that $y_\beta = h_p(x_\alpha)$. Now $h_p(x_\alpha) = y_\beta \in S \Rightarrow x_\alpha \in h_p^{-1}(S)$. Since \mathbf{U}_1 is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{Reg}$, there exist $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{o}$ sets L and M in \mathbf{U}_1 such that $x_\alpha \in L$, $h_p^{-1}(S) \subseteq M$ and $L \cap M = 0_p$. Now $x_\alpha \in L \Rightarrow h_p(x_\alpha) \in h_p(L)$ and $h_p^{-1}(S) \subseteq M \Rightarrow h_p(M)$. Also $L \cup M = 0_p \Rightarrow h_p(L \cup M) = 0_p \Rightarrow h_p(L) \cup h_p(M) = 0_p$. Since h_p is a $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{o}$ map, $h_p(L)$ and $h_p(M)$ are disjoint $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{o}$ sets in \mathbf{U}_2 containing y_β and S respectively. Thus \mathbf{U}_2 is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{Reg}$.

Theorem 2.5 Let \mathbf{U} be a $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{Reg}$ space.

(i). Every $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{o}$ set in \mathbf{U} is a union of $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{c}$ sets.

(ii). Every $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{c}$ set in \mathbf{U} is an intersection of $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{o}$ sets.

Proof. (i) Suppose \mathbf{U} is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{Reg}$. Let G be a $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{o}$ set and $x_\alpha \in G$. Then $F = G^\sigma$ is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{o}$ sets $L(x_\alpha)$ and M in \mathbf{U} such that $x_\alpha \in L(x_\alpha)$ and $F \subseteq M$. Since $L(x_\alpha) \cap F \subseteq L(x_\alpha) \cap M = 0_p$, we have $L(x_\alpha) \subseteq F^\sigma = G$. Take $M(x_\alpha) = \mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{cl}(L(x_\alpha))$. Then $M(x_\alpha)$ is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{c}$ set and $M(x_\alpha) \cap M = x_\alpha \in M(x_\alpha) \subseteq F^\sigma = G$. This proves that $G = \bigcup \{M(x_\alpha); x_\alpha \in G\}$. Thus G is a union of $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta\text{c}$ sets.

(ii) Follows from (i) and set theoretic properties.

Theorem 2.6

Let $(U_1, \tau_p(F_1))$ and $(U_2, \tau_p(F_2))$ be two $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}$'s. If $h_p: U_1 \rightarrow U_2$ is a $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}\mathcal{C}\mathcal{S}$ and $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{C}$ injection of a $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}$ U_1 into a $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{R}\mathcal{E}\mathcal{G}$ space U_2 and if every $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}\mathcal{C}$ set in U_1 is $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{C}$, then U_1 is $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}\mathcal{R}\mathcal{E}\mathcal{G}$.

Proof. Let $x_\alpha \in U_1$ and A be a $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}\mathcal{C}$ set in U_1 not containing x_α . Then by assumption, A is $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{C}$ set in U_1 . Since h_p is $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{C}$, $h_p(A)$ is a $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{C}$ set in U_2 not containing $h_p(x_\alpha)$. Since U_2 is $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{R}\mathcal{E}\mathcal{G}$, there exist disjoint $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{O}$ sets M_1 and M_2 in U_2 such that $h_p(x_\alpha) \in M_1$ and $h_p(A) \subseteq M_2$. Since h_p is $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}\mathcal{C}\mathcal{S}$, $h_p^{-1}(M_1)$ and $h_p^{-1}(M_2)$ are disjoint $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}\mathcal{O}$ sets in U_1 containing x_α and A respectively. Hence U_1 is $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}\mathcal{R}\mathcal{E}\mathcal{G}$.

Theorem 2.7 Let $(U_1, \tau_p(F_1))$ and $(U_2, \tau_p(F_2))$ be two $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}$'s. If $h_p: U_1 \rightarrow U_2$ is a $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{C}\mathcal{S}$, $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}\mathcal{B}\mathcal{O}$ bijection of a $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{R}\mathcal{E}\mathcal{G}$ space U_1 into a $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}$ U_2 and if every $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}\mathcal{C}$ set in U_2 is $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{C}$, then U_1 is $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}\mathcal{R}\mathcal{E}\mathcal{G}$.

Proof. Let $x_\alpha \in U_2$ and B be a $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}\mathcal{C}$ set in U_2 not containing x_α . Then by assumption, B is $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{C}$ set in U_2 . Since h_p is a $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{C}\mathcal{S}$ bijection, $h_p^{-1}(B)$ is a $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{C}$ set in U_1 not containing the point $h_p^{-1}(x_{(\alpha, \beta, \gamma)})$. Since U_1 is $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{R}\mathcal{E}\mathcal{G}$, there exist disjoint $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{O}$ sets L_1 and L_2 in U_1 such that $h_p^{-1}(x_{(\alpha, \beta, \gamma)}) \in L_1$ and $h_p^{-1}(B) \subseteq L_2$. Since h_p is $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}\mathcal{B}\mathcal{O}$, $h_p(L_1)$ and $h_p(L_2)$ are disjoint $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}\mathcal{O}$ sets in U_2 containing x_α and B respectively. Hence U_1 is $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}\mathcal{R}\mathcal{E}\mathcal{G}$.

Remark 2.1 Theorems 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 and Corollary 3.1 holds for $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{O}$, $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}\mathcal{O}$, $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}\mathcal{P}\mathcal{O}$, $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}\mathcal{S}\mathcal{O}$ and $\mathcal{P}\mathcal{F}\mathcal{M}\mathcal{S}\mathcal{A}\mathcal{O}$ sets.

On Regular Spaces in the Framework of Pythagorean Fuzzy Nano $\delta\beta$ -open Sets 11

3 STRONGLY PYTHAGOREAN FUZZY NANO δ (RESP. δ PRE, δ SEMI, $\delta\alpha$ AND $\delta\beta$) REGULAR SPACES

In this section, we introduce strongly Pythagorean fuzzy nano δ (resp. δ pre, δ semi, $\delta\alpha$ and $\delta\beta$) regular spaces and study their properties.

Definition 3.1 Let $(U, \tau_p(F))$ be a PFMts is said to be strongly Pythagorean fuzzy nano δ (resp. δ pre, δ semi, $\delta\alpha$ and $\delta\beta$) regular (briefly, $\text{PFM}\delta\text{Reg}$ (resp. $\text{PFM}\delta\text{PreReg}$, $\text{PFM}\delta\text{SReg}$, $\text{PFM}\delta\alpha\text{Reg}$ and $\text{PFM}\delta\beta\text{Reg}$)) if for each $\text{PFM}\delta\text{c}$ (resp. $\text{PFM}\delta\text{Pc}$, $\text{PFM}\delta\text{Sc}$, $\text{PFM}\delta\text{Ac}$ and $\text{PFM}\delta\beta\text{c}$) set A and a point $x_\alpha \in A$, there exist disjoint $\text{PFM}\delta\text{o}$ sets L and M such that $A \subseteq L$ and $x_\alpha \in M$.

Proposition 3.1 Let $(U, \tau_p(F))$ be a PFMts .

(i). Every $\text{StPFM}\delta\beta\text{Reg}$ space is $\text{PFM}\delta\beta\text{Reg}$.

(ii). Every $\text{StPFM}\delta\beta\text{Reg}$ is PFMReg .

Proof. (i) Suppose U is $\text{StPFM}\delta\beta\text{Reg}$. Let F be a $\text{PFM}\delta\beta\text{c}$ set and $x_\alpha \in F$. Since U is $\text{StPFM}\delta\beta\text{Reg}$, there exist disjoint $\text{PFM}\delta\beta\text{o}$ sets L and M such that $x_\alpha \in L$ and $F \subseteq M$. Since, every $\text{PFM}\delta\text{o}$ set is $\text{PFM}\delta\beta\text{o}$ set, L and M are $\text{PFM}\delta\beta\text{o}$ sets. This implies that U is $\text{PFM}\delta\beta\text{Reg}$. Similarly we can prove the result (ii).

Definition 3.2 Let $(U, \tau_p(F))$ be a PFMts is said to be strongly * Pythagorean fuzzy nano (resp. δ , δ pre, δ semi, $\delta\alpha$ and $\delta\beta$) regular (briefly, St^*PFMReg (resp. $\text{St}^*\text{PFM}\delta\text{Reg}$, $\text{St}^*\text{PFM}\delta\text{PreReg}$, $\text{St}^*\text{PFM}\delta\text{SReg}$, $\text{St}^*\text{PFM}\delta\alpha\text{Reg}$ and $\text{St}^*\text{PFM}\delta\beta\text{Reg}$)) if for each $\text{PFM}\delta\text{c}$ set A and a point $x_\alpha \in A$, there exist disjoint

$\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{o}$ (resp. $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{o}$, $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{O}$, $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{S}\mathcal{o}$, $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{S}\mathcal{a}\mathcal{o}$ and $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{o}$) sets \mathbf{L} and \mathbf{M} such that $\mathbf{A} \subseteq \mathbf{L}$, $x_a \in \mathbf{M}$.

Proposition 3.2 Let $(\mathbf{U}, \tau_{\mathcal{P}}(\mathbf{F}))$ be a $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{S}$. Every $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{R}\mathcal{E}\mathcal{G}$ space is $St^*\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{R}\mathcal{E}\mathcal{G}$.

Proof. Suppose \mathbf{U} is $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{R}\mathcal{E}\mathcal{G}$. Let \mathbf{F} be a $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{c}$ set and $x_a \in \mathbf{F}$. Then \mathbf{F} is $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{c}$ set. Since \mathbf{U} is $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{R}\mathcal{E}\mathcal{G}$, there exist disjoint $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{o}$ sets \mathbf{L} and \mathbf{M} such that $x_a \in \mathbf{L}$ and $\mathbf{F} \subseteq \mathbf{M}$. This implies that \mathbf{U} is $St^*\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{R}\mathcal{E}\mathcal{G}$.

Theorem 3.1 In a $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{S}$ $(\mathbf{U}, \tau_{\mathcal{P}}(\mathbf{F}))$, the following are equivalent: (i). \mathbf{U} is $St\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{R}\mathcal{E}\mathcal{G}$. (ii). For every $x_a \in \mathbf{U}$ and every $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{o}$ set \mathbf{G} containing x_a , there exists a $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{o}$ set \mathbf{L} such that $x_a \in \mathbf{L} \subseteq \mathcal{P}\mathcal{F}\mathcal{N}\mathcal{c}(\mathbf{L}) \subseteq \mathbf{G}$.

(iii). For every $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{c}$ set \mathbf{F} , the intersection of all $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{c}$ sets, $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{q}$ -nbhd of \mathbf{F} is exactly \mathbf{F} .

(iv). For any Pythagorean fuzzy set \mathbf{A} and a $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{o}$ set \mathbf{B} such that $\mathbf{A} \cap \mathbf{B} \neq \mathbf{0}_p$, there exists a $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{o}$ set \mathbf{L} such that $\mathbf{A} \cap \mathbf{L} \neq \mathbf{0}_p$ and $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{c}(\mathbf{L}) \subseteq \mathbf{B}$.

(v). For every non-empty Pythagorean fuzzy set \mathbf{A} and $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{c}$ set \mathbf{B} such that $\mathbf{A} \cap \mathbf{B} = \mathbf{0}_p$, there exist disjoint $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{o}$ sets \mathbf{L} and \mathbf{M} such that $\mathbf{A} \cap \mathbf{L} \neq \mathbf{0}_p$ and $\mathbf{B} \subseteq \mathbf{M}$.

Proof. (i) \Rightarrow (ii): Suppose \mathbf{U} is $St\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{R}\mathcal{E}\mathcal{G}$. Let $x_a \in \mathbf{U}$ and let \mathbf{G} be a $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{o}$ set containing x_a . Then $x_a \in \mathbf{G}^c$ and \mathbf{G}^c is $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{c}$. Since \mathbf{U} is $St\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{R}\mathcal{E}\mathcal{G}$, there exist $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{o}$ sets \mathbf{L} and \mathbf{M} such that $\mathbf{L} \cap \mathbf{M} = \mathbf{0}_p$ and $x_a \in \mathbf{L}, \mathbf{G}^c \subseteq \mathbf{M}$. It

On Regular Spaces in the Framework of Pythagorean Fuzzy Nano $\delta\beta$ -open Sets 13

follows that $L \subseteq M^c \subseteq G$ and hence $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{C}\mathcal{L}(L) \subseteq \mathcal{P}\mathcal{F}\mathcal{N}\mathcal{C}\mathcal{L}(M^c) = M^c \subseteq G$. That is

$x_a \in L \subseteq \mathcal{P}\mathcal{F}\mathcal{N}\mathcal{C}\mathcal{L}(L) \subseteq G$.

(ii) \Rightarrow (iii): Let F be any $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta c$ set and $x_a \in F$. Then F^c is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta o$ set and $x_a \in F^c$. By assumption, there exists a $\mathcal{P}\mathcal{F}\mathcal{N}o$ set L such that $x_a \in L \subseteq \mathcal{P}\mathcal{F}\mathcal{N}\mathcal{C}\mathcal{L}(L) \subseteq F^c$. Thus $F \subseteq (\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{C}\mathcal{L}(L))^c \subseteq L^c$. Now L^c is $\mathcal{P}\mathcal{F}\mathcal{N}c$, $\mathcal{P}\mathcal{F}\mathcal{N}q$ -nbhd of F which does not contain x_a . So, we get the intersection of all $\mathcal{P}\mathcal{F}\mathcal{N}c$ set, $\mathcal{P}\mathcal{F}\mathcal{N}q$ -nbhd of F is exactly F .

(iii) \Rightarrow (iv): Suppose $A \cap B \neq 0_p$ and B is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta o$. Let $x_a \in A \cap B$. Since B is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta o$, B^c is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta c$ and $x_a \in B^c$. By using (iii), there exists a $\mathcal{P}\mathcal{F}\mathcal{N}c$ set, $\mathcal{P}\mathcal{F}\mathcal{N}q$ -nbhd M of B^c such that $x_a \in M$. Now for the $\mathcal{P}\mathcal{F}\mathcal{N}q$ -nbhd M of B^c there exists a $\mathcal{P}\mathcal{F}\mathcal{N}o$ set G such that $B^c \subseteq G \subseteq M$. Take $L = M^c$. Thus L is a $\mathcal{P}\mathcal{F}\mathcal{N}o$ set containing x_a . Also $A \cap L \neq 0_p$ and $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{C}\mathcal{L}(L) \subseteq G^c \subseteq B$.

(iv) \Rightarrow (v): Suppose A is a non-empty Pythagorean fuzzy set and B is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta c$ set such that $A \cap B = 0_p$. Then B^c is $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta o$ set and $A \cap B^c \neq 0_p$. By our assumption, there exists a $\mathcal{P}\mathcal{F}\mathcal{N}o$ set L such that $A \cap L \neq 0_p$, and $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{C}\mathcal{L}(L) \subseteq B^c$. Take $M = (\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{C}\mathcal{L}(L))^c$. Since $\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{C}\mathcal{L}(L)$ is $\mathcal{P}\mathcal{F}\mathcal{N}c$ set, M is $\mathcal{P}\mathcal{F}\mathcal{N}o$ set. Also $B \subseteq M$ and $L \cap M \subseteq \mathcal{P}\mathcal{F}\mathcal{N}\mathcal{C}\mathcal{L}(L) \cap (\mathcal{P}\mathcal{F}\mathcal{N}\mathcal{C}\mathcal{L}(L))^c = 0_p$.

(v) \Rightarrow (i): Let S be $\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta c$ set and $x_a \in S$. Then $S \cap \{x_a\} = 0_p$. By (v), there exist disjoint $\mathcal{P}\mathcal{F}\mathcal{N}o$ sets L and M such that $L \cap \{x_a\} \neq 0_p$ and $S \subseteq M$. That is L and M are disjoint $\mathcal{P}\mathcal{F}\mathcal{N}o$ sets containing x_a and S respectively. This proves that $(U, \tau_p(F))$ is $St\mathcal{P}\mathcal{F}\mathcal{N}\delta\beta Reg$.

Theorem 3.2 A \mathcal{PFMts} $(U, \tau_p(F))$ is $StPFM\delta\beta Reg$ if and only if for each $\mathcal{PFM\delta\beta c}$ set F of U and each $x_a \in F^c$, there exist $\mathcal{PFM\alpha}$ sets L and M of U such that $x_a \in L$ and $F \subseteq M$ and $\mathcal{PFMcl}(L) \cap \mathcal{PFMcl}(M) = 0_p$.

Proof. Suppose U is $StPFM\delta\beta Reg$. Let F be a $\mathcal{PFM\delta\beta c}$ set in U and $x_a \in F^c$. Then there exist $\mathcal{PFM\alpha}$ sets $L(x_a)$ and M such that $x_a \in L(x_a)$, $F \subseteq M$ and $L(x_a) \cap M = 0_p$. This implies that $L(x_a) \cap \mathcal{PFMcl}(M) = 0_p$. Also $\mathcal{PFMcl}(M)$ is a $\mathcal{PFM\alpha}$ set and hence $\mathcal{PFM\delta\beta c}$ set and $x_a \in \mathcal{PFMcl}(M)$. Since U is $StPFM\delta\beta Reg$, there exist $\mathcal{PFM\alpha}$ sets G and H of U such that $x_a \in G$, $\mathcal{PFMcl}(M) \subseteq H$ and $G \cap H = 0_p$. This implies $\mathcal{PFMcl}(G) \cap H \subseteq \mathcal{PFMcl}(H^c) \cap H = (H^c) \cap H = 0_p$. Take $L = G$. Now L and M are $\mathcal{PFM\alpha}$ sets in U such that $x_a \in L$ and $F \subseteq M$. Also $\mathcal{PFMcl}(L) \cap \mathcal{PFMcl}(M) \subseteq \mathcal{PFMcl}(G) \cap H = 0_p$.

Conversely, suppose for each $\mathcal{PFM\delta\beta c}$ set F of U and each $x_a \in F^c$, there exist $\mathcal{PFM\alpha}$ sets L and M of U such that $x_a \in L$ and $F \subseteq M$ and $\mathcal{PFMcl}(L) \cap \mathcal{PFMcl}(M) = 0_p$. Now $L \cap M \subseteq \mathcal{PFMcl}(L) \cap \mathcal{PFMcl}(M) = 0_p$. Therefore $L \cap M = 0_p$. This proves that U is $StPFM\delta\beta Reg$.

Theorem 3.3 A \mathcal{PFMts} $(U, \tau_p(F))$ is $StPFM\delta\beta Reg$ if and only if every pair consisting of a $\mathcal{PFM\delta\beta Comp}$ set and a disjoint $\mathcal{PFM\delta\beta c}$ set can be separated by $\mathcal{PFM\alpha}$ sets.

Proof. Let U be $StPFM\delta\beta Reg$ and let A be a $\mathcal{PFM\delta\beta Comp}$ set, B $\mathcal{PFM\delta\beta c}$ set with $A \cap B = 0_p$. Since U is $StPFM\delta\beta Reg$, for each $x_a \in A$, there exist disjoint $\mathcal{PFM\alpha}$ sets $L(x_a)$ and $M(x_a)$ such that $x_a \in L(x_a)$, $B \subseteq M(x_a)$. Obviously,

$\{L(x_a) : x_a \in A\}$ is a PFNo covering of A . Since A is $\text{PFNo}\beta\text{Comp}$, there exists a finite subfamily $\{L_{x_i} : i = 1, 2, \dots, n\}$ which covers A . It follows that

$$A \subseteq \bigcup \{L_{x_i} : i = 1, 2, \dots, n\} \quad \text{and} \quad B \subseteq \bigcap \{M_{x_i} : i = 1, 2, \dots, n\}. \quad \text{Put}$$

$L = \bigcup \{L_{x_i} : i = 1, 2, \dots, n\}$ and $M = \bigcap \{M_{x_i} : i = 1, 2, \dots, n\}$. Then L and M are PFNo in U . Also $L \cap M = \emptyset$. Otherwise, if $x_a \in L \cap M \Rightarrow x_a \in L_{x_j}$ for some j and $x_a \in M_{x_i}$ for every i . This implies that $x_a \in L_{x_j} \cap M_{x_i}$, which is a contradiction to $L_{x_j} \cap M_{x_i} = \emptyset$. Thus L and M are disjoint PFNo sets containing A and B respectively.

Conversely, suppose every pair consisting of a $\text{PFNo}\beta\text{Comp}$ set and a disjoint $\text{PFNo}\beta c$ set can be separated by PFNo sets. Let F be a $\text{PFNo}\beta c$ set and $x_a \in F$. Then $\{x_a\}$ is $\text{PFNo}\beta\text{Comp}$ set of U and $\{x_a\} \cap F = \emptyset$. By our assumption, there exist disjoint PFNo sets L and M such that $x_a \in L$ and $F \subseteq M$. This proves that U is $\text{StPFNo}\beta\text{Reg}$.

Corollary 3.1 *If U is a $\text{StPFNo}\beta\text{Reg}$ space, A is a $\text{PFNo}\beta\text{Comp}$ subset of U and B is a PFNo set containing A , then there exists a PFNo set M such that $A \subseteq M \subseteq \text{PFNoel}(M) \subseteq B$.*

Proof. Let U be $\text{StPFNo}\beta\text{Reg}$ and let A be a $\text{PFNo}\beta\text{Comp}$ set, B PFNo set with $A \subseteq B$. Then B^c is $\text{PFNo}\beta c$ such that $B^c \cap A = \emptyset$. Since U is a $\text{StPFNo}\beta\text{Reg}$ space, then there exist disjoint PFNo sets L_1 and L_2 such that $A \subseteq L_1$ and $B^c \subseteq L_2$. Take $M = \text{PFNoInt}(\text{PFNoel}(L_1))$. Then

$$\text{PFNoel}(M) = \text{PFNoel}(\text{PFNoInt}(\text{cl}(L_1))) \subseteq \text{PFNoel}(\text{PFNoel}(L_1)) = \text{PFNoel}(L_1).$$

Since L_1 is a \mathcal{PFNo} set and $L_1 \subseteq \mathcal{PFNcl}(L_1)$, we have $L_1 = \mathcal{PFNint}(L_1) \subseteq \mathcal{PFNint}(\mathcal{PFNcl}(L_1)) = M$. This implies that $\mathcal{PFNcl}(L_1) \subseteq \mathcal{PFNcl}(M)$. It follows that $\mathcal{PFNcl}(M) = \mathcal{PFNcl}(L_1)$ and $\mathcal{PFNint}(\mathcal{PFNcl}(M)) = \mathcal{PFNint}(\mathcal{PFNcl}(L_1)) = M$. Thus M is \mathcal{PFNo} set. Now $A \subseteq L_1 = \mathcal{PFNint}(L_1) \subseteq \mathcal{PFNint}(\mathcal{PFNcl}(L_1)) = M$. This implies that $A \subseteq M$ and $\mathcal{PFNcl}(M) = \mathcal{PFNcl}(L_1) \subseteq L_2^c \subseteq B$ imply that $A \subseteq M \subseteq \mathcal{PFNcl}(M) \subseteq B$.

Theorem 3.4 *Let $h_p: (U_1, \tau_p(F_1)) \rightarrow (U_2, \tau_p(F_2))$ be a bijective function. If h_p is $\mathcal{PFN\delta\beta Irr}$, \mathcal{PFNo} and U_1 is $\mathcal{StPFN\delta\beta Reg}$, then U_2 is $\mathcal{StPFN\delta\beta Reg}$.*

Proof. Suppose U_1 is $\mathcal{StPFN\delta\beta Reg}$. Let S be any $\mathcal{PFN\delta\beta c}$ set in U_2 such that $y_p \in S$. Since h_p is $\mathcal{PFN\delta\beta Irr}$, $h_p^{-1}(S)$ is $\mathcal{PFN\delta\beta c}$ set in U_1 . Since h_p is onto, there exists $x \in U_1$ such that $y_p = h_p(x)$. Now $h_p(x) = y_p \in S \Rightarrow x \in h_p^{-1}(S)$. Since U_1 is $\mathcal{StPFN\delta\beta Reg}$, there exist \mathcal{PFNo} sets L and M in U_1 such that $x \in L$, $h_p^{-1}(S) \subseteq M$ and $L \cap M = 0_p$. Now $x \in L \Rightarrow h_p(x) \in h_p(L)$ and $h_p^{-1}(S) \subseteq M \Rightarrow S \subseteq h_p(M)$. Also $L \cap M = 0_p \Rightarrow h_p(L \cap M) = 0_p \Rightarrow h_p(L) \cap h_p(M) = 0_p$. Since h_p is a \mathcal{PFNo} map, $h_p(L)$ and $h_p(M)$ are disjoint \mathcal{PFNo} sets in U_2 containing y_p and S respectively. Thus U_2 is $\mathcal{StPFN\delta\beta Reg}$.

Remark 3.1 *Theorems 3.1, 3.2, 3.3, 3.4, Propositions 3.1, 3.2 and Corollary 3.1 are holds \mathcal{PFNo} , \mathcal{PFNo} , $\mathcal{PFN\delta\beta o}$, $\mathcal{PFN\delta\beta o}$ and $\mathcal{PFN\delta\beta o}$ sets.*

Conclusion: In this paper, we have investigated $\mathcal{PFN\delta\beta}$ -regular spaces and strongly $\mathcal{PFN\delta\beta}$ -regular spaces by employing $\mathcal{PFN\delta\beta}$ -open and $\mathcal{PFN\delta\beta}$ -closed sets. We

examined the interrelationships between these newly introduced spaces as well as their connections with existing classes of spaces. Additionally, we explored fundamental properties and provided characterizations of the defined spaces within the framework of Pythagorean fuzzy nano topological structures.

References

- [1] A. Acikgoz and F. Esenbel, Neutrosophic soft δ -topology and neutrosophic soft compactness, AIP Conference Proceedings 2183 (2019), 030002.
- [2] D. Ajay and J. Joseline Charisma, Pythagorean nano topological space, International Journal of Recent Technology and Engineering, 8 (2020), 3415-3419.
- [3] D. Ajay and J. Joseline Charisma, On weak forms of Pythagorean nano open sets, Advances in Mathematics: Scientific Journal, 9 (2020), 5953-5963.
- [4] S. Aranganayagi, M. Saraswathi and K. Chitirkala, More on open maps and closed maps in fuzzy hypersoft topological spaces and application in Covid-19 diagnosis using cotangent similarity measure, International Journal of Neutrosophic Science, 21(2), (2023), 32-58.
- [5] S. Aranganayagi, M. Saraswathi, K. Chitirkala and A. Vadivel, The ε -open sets in neutrosophic hypersoft topological spaces and application in Covid-19 diagnosis using normalized hamming distance, Journal of the Indonesian Mathematical Society, 29(2), (2023), 177-196.
- [6] K. T. Atanassov, Intuitionistic fuzzy sets, VII ITKR Session, Sofia (1983).
- [7] K. Balasubramaniyan, K. Nijanthan, A. Vadivel and K. Shantha lakshmi, More on contra continuous, irresolute maps in Pythagorean fuzzy nano topological spaces and application in **MCDM**, Communications in Communications on Applied Nonlinear Analysis, 32 (10s) (2025), 1925-1946.
- [8] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. (24) (1968), 182-190.
- [9] SM Chen and CH Chang, A novel similarity between Atanssov's intuitionistic fuzzy sets based on transformation technique with applications to pattern recognition, Inf Sci (291) (2015), 96-114.

[10] P. Deivanayagi, S. Tamilselvan and A. Vadivel, Stronger and Weaker Forms of Open Mappings via Pythagorean Fuzzy Nano \mathbb{M} -open Sets, Tuijin Jishu/ Journal of Propulsion Technology, 46 (1) (2025), 1338-1352.

[11] Murat Olgun, Mehmet Unver and Seyhmus Yardimci, Pythagorean fuzzy topological spaces, Complex & Intelligent Systems (2019).
<https://doi.org/10.1007/s40747-019-0095-2>.

[12] Paul Augustine Ejegwa, Pythagorean fuzzy set and its application in career placements based on academic performance using max-min-max composition Complex and Intelligent Systems (2019).

[13] X. Peng and Y. Yang, Some results for Pythagorean fuzzy sets, Int. J. Intell Syst. 30 (2015), 1133-1160.

[14] Rana Muhammad Zulqarnain et al, Development of TOPSIS Technique under Pythagorean Fuzzy Hypersoft Environment Based on Correlation Coefficient and Its Application towards the Selection of Antivirus Mask in COVID-19 Pandemic Hindawi Complexity (2021).

[15] S. Saha, Fuzzy \mathfrak{G} -continuous mappings, Journal of Mathematical Analysis and Applications, 126 (1987), 130-142.

[16] P. Surendra, K. Chitirakala and A. Vadivel, \mathfrak{G} -open sets in neutrosophic hypersoft topological spaces, International Journal of Neutrosophic Science, 20 (4), (2023), 93-105.

[17] P. Surendra, A. Vadivel and K. Chitirakala, \mathfrak{G} -separation axioms on fuzzy hypersoft topological spaces, International Journal of Neutrosophic Science, 23 (1), (2024), 17-26.

[18] A. Vadivel, M. Seenivasan and C. John Sundar, An Introduction to \mathfrak{G} -open sets in a Neutrosophic Topological Spaces, Journal of Physics: Conference Series, 1724 (2021), 012011.

[19] A. Vadivel, C. John Sundar, K. Kirubadevi and S. Tamilselvan, More on Neutrosophic Nano Open Sets, International Journal of Neutrosophic Science (IJNS),

On Regular Spaces in the Framework of Pythagorean Fuzzy Nano $\delta\beta$ -open Sets 19

18 (4) (2022), 204-222.

[20] R. H. Warren (1978), Neighborhoods, Bases and Continuity in Fuzzy Topological Spaces, Rocky Mountain Journal of Mathematics, (8).

[21] GW. Wei and G. Lan Grey (2008), relational analysis method for interval valued intuitionistic fuzzy multiple attribute decision making, In Fifth international conference on fuzzy systems and knowledge discovery, 291-295.

[22] R. R. Yager (2013), Pythagorean fuzzy subsets, In: Proceedings of the joint **IFSA** world congress **NAFIPS** annual meeting, 57-61.

[23] L. A. Zadeh (1965), Fuzzy sets, Inf. Control, 8, 338-353.