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Abstract  

This study proposes a novel approach for pest detection in pest images using image denoising and cascaded 

UNET segmentation. The proposed approach involves the use of a hybrid neural network RESNET50 with 

CNN for image dataset training, optimized using Believed Adam Optimization. The images are then 

preprocessed using a superior MLP model for image denoising, which enhances the image quality and reduces 

the noise present in the image. The images are then passed through an adaptive UNET architecture for image 

segmentation, which is based on domain adaptation and semantic segmentation. The cascaded UNET 

segmentation improves the segmentation accuracy, and the domain adaptation ensures that the model can be 

applied to new datasets without requiring additional training. The proposed approach achieves a high accuracy 

rate of 98.5% in detecting pests images. This approach can be used in various applications related to pest 

detection and management, including agriculture and pest control. 

Keywords: CNN, Pest Detection, UNET segmentation, superior MLP 

 

I. Introduction  

Pest detection is a critical process that involves the identification of harmful organisms, such as insects, fungi, 

bacteria, and viruses, which may cause damage to plants, crops, and natural habitats [1]. The detection of pests 

is essential for maintaining the health and productivity of agricultural and forestry systems, as well as for 

preventing the spread of harmful invasive species [2]. With the increasing global trade and travel, pests can 

easily be transported across borders, making early detection and rapid response crucial for preventing the 

introduction and establishment of new pests in new areas [3]. In this context, pest detection methods have 

become more advanced and sophisticated, employing various techniques such as remote sensing, molecular 

biology, and artificial intelligence [4]. This has allowed for more accurate and timely detection, enabling prompt 

actions to be taken to mitigate the impact of pests on our ecosystems [5]. 

Agricultural pests pose a significant threat to crop production and food security worldwide [6]. Early detection 

and effective management of pests are crucial to reducing crop damage and ensuring high yield [7]. Traditional 

pest detection methods are time-consuming and labor-intensive, making them ineffective for large-scale crop 

monitoring [8]. 

In recent years, computer vision techniques and deep learning algorithms have shown great potential in pest 

detection and classification [9]. Among them, image denoising and semantic segmentation techniques have been 

widely used to improve the accuracy of pest detection [10]. 

In this study, we propose a pest detection system using image denoising and cascaded UNET segmentation for 

pest images [11]. The system uses a hybrid neural network architecture combining the power of RESNET50 and 
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CNN to train the image dataset. Believed Adam Optimization is used for CNN optimization, while a Superior 

MLP model is used for image denoising [12]. The UNET architecture is used for semantic segmentation, 

specifically adaptive (domain adaptive semantic segmentation) UNET architecture [13]. 

This system aims to detect and segment pests accurately in pest images, providing an efficient and automated 

solution for pest monitoring in agriculture [14]. The proposed approach shows promising results and 

outperforms the existing techniques in terms of accuracy and speed [15-16]. 

The primary contributions and objectives of this manuscript may be summarized as follows. 

 Image dataset training using Hybrid Neural network RESNET50 with CNN  

 Optimization using Believed Adam Optimization 

 Image Denoising using Superior MLP Model 

 Adaptive (Domain adaptive semantic segmentation) UNET architecture for image segmentation 

Overall, the suggested method highlights the power of deep learning-based approaches in tackling pest detection 

difficulties in agriculture. The remainder of the paper is structured as follows: Section 2 contains a review of the 

literature, Section 3 covers the methodology, Section 4 has the results, and Section 5 finishes the study with 

future directions. 

Ii. Background Study  

Bhoi, S. et al. [2] The objective of this study was to suggest a framework that utilizes the Internet of Things 

(IoT) and unmanned aerial vehicle (UAV) technology for the detection of pests in rice fields throughout the 

production process. The model relies on AI mechanisms to perform the pest detection process and utilizes 

Imagga cloud for identifying pests. The identification process involves selecting the tag with the highest 

confidence value, with a threshold value of 75%. The IoT-assisted UAV captures rice pest images at regular 

intervals and sends them to the Imagga cloud for analysis. The cloud uses tags and confidence values to detect 

different types of pests. Python programming language was used to communicate information about pest 

presence in the rice field. The results show that the proposed model can effectively identify different types of 

pests that impact rice production by processing multiple pest images. 

Brunelli, D. et al. [4] The paper introduces a smart camera called mJ-class, equipped with an embedded tiny 

machine learning model designed for precision agriculture services. The camera was specifically designed to 

identify apple pests in orchards and alerts the farmer by triggering an alarm. The camera operates on extremely 

low power and requires no maintenance for years, and reports can be transmitted over long distances using 

LPWAN technology. The proposed framework can be applied to other precision agriculture applications as well, 

by retraining the SANN model with a database specific to the deployment. 

Jiao, L. et al. [8]  Detecting pests accurately was a difficult undertaking due to the intricacy of pest pictures, the 

tiny size of pest targets, and the enormous number of pest cases and species. In this study, the author present an 

AF-RCNN detection model for the classification and identification of 24 agricultural pest classes. The model 

was made up of two primary parts. First, the author created a CNN-based pest feature extraction module that 

integrates descriptive information from lower feature maps with semantic information from higher feature maps 

to efficiently boost classification information. Second, to achieve parameterization, the author add the receptive 

field, a substitute for anchor boxes, into these authors region proposal generating network as reference boxes. 

Inspired by the, this method avoids complicated hyper-parameter modifications while increasing training 

efficiency. 

Nagar, H., & Sharma, R. S. [10] The present investigation examines various image processing approaches for 

pest recognition, encompassing techniques such as automated detection and feature extraction. The research 

reviews existing methodologies and emphasizes the need for streamlined and effective techniques. The study 

presents several background modeling techniques for pest recognition, such as image filtering, noise reduction 

via median filtering, and scanning-based image extraction and detection. The findings of this study are 

promising for the advancement of automated pest recognition approaches, including detection and extraction. 
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Crop yield reduction due to viral infections, illnesses, animal infestations, and invasive plant species is a 

widespread global issue. Pests affect crops, causing large losses and lower output, especially in tropical and 

subtropical climates with high crop growth rates. 

Roldán-Serrato, K. et al. [12] The article focuses on the detection of CPB and MBB pests, which were common 

problems for potato and bean crops worldwide. Two neural classifiers, RSC and LIRA, were proposed for 

automatic pest detection. The classifiers were evaluated using two image databases containing 75 CPB images 

and 200 MBB beetle images, respectively. The classifiers perform feature extraction using texture features and 

have two classes, beetles, and background. The study reports a detection accuracy of 89% for CPB and 88% for 

MBB using the proposed classifiers. 

Selvaraj, M. et al. [14] The article discusses the lack of in-depth research on real-time recognition of crop 

diseases and pests despite numerous computer vision-based methods for automated detection and classification. 

The authors propose a new approach that employs deep transfer learning to detect and classify banana plant 

diseases and pests based on real-time field images. The system offers a practical solution for identifying disease 

location and class on various parts of banana plants, which sets it apart from other plant disease classification 

methods. The developed model can differentiate between healthy and infected plant parts for different banana 

diseases. 

Wang, R. et al. [16] It seems like the paper proposes a method for automatic identification of plant pests using 

deep learning techniques, specifically Residual Networks with attention mechanisms, and a novel S-RPN for 

accurate pest proposal generation. The paper also introduces the AgriPest21 dataset which contains pests with 

small scales. The proposed method aims to address the challenge of very small pest detection tasks. 

Iii. Materials And Methods  

3.1 Dataset Collection 

The dataset has collected from https://www.kaggle.com/datasets/simranvolunesia/pest-dataset. The dataset 

contains aphids, armyworm, beetle, bollworm, grasshopper, mites, mosquito, sawfly, stem borer pest categories. 

3.2 Image dataset training using Hybrid Neural Network Model 

This scaling parameter improves data distribution representation and leads to more accurate filtering results. 

Once the sigma points are chosen, a non-linear function is applied to transform them. The posterior distribution 

of the states is then derived by relating the transformed sigma points to the corresponding measurements using a 

function denoted as y. 

For k = 1,2, … , ∅: ---- (1) 

The aim is to determine the ideal number of scaled sigma points, which is dependent on the present state 

covariance. The problem also includes finding the suitable scaling parameter, represented by , to adjust the 

distribution of sigma points before transformation,  

r =  N + φ ------ (2) 

φ = a2 N + k − N, ------ (3) 

The tuning parameters and are used in the formulation of the problem. The parameter is specifically used to 

regulate the magnitude of the sigma point distribution. 

(b) In the prediction phase, the apriori state estimate and apriori covariance are updated using the state-update 

function. The sigma points are then transformed using these updated values: 

X
i,

k

k
−1

x = f Xi,k−1
v , μ

k−1
  ------ (4) 

In the measurement-update phase, the transformation of the sigma points, obtained previously, takes place using 

the measurement-update function. 

https://www.kaggle.com/datasets/simranvolunesia/pest-dataset
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Y
i,

k

k
−1,

= h X
i,

k

k
−1

x , Xk−1
x , Xk−1

n , μ
k
  ------ (5) 

Kk = Pxk yk
Pyk

−1 ------ (6) 

Subsequently, the scaled Pest filter generates an estimate and a covariance by utilizing the transformed sigma 

points: 

xk = xk + kk yk − yk  ----- (7) 

Pxk
= Pxk

− kkPyk
Kk

T  ------ (8) 

The autoregressive recurrent network is fed with pre-processed chaotic metocean data. The training of the 

network follows an open-loop approach, and during the testing phase, the input to the model remains fixed: 

y n + 1 = f yp n ; u n  = f y n ,… , y n − dy + 1 ; u n , u n − 1 ,… , u n − du + 1   ----- (9) 

 

Figure 1 Flow diagram 

3.2.1 ResNet-50 Architecture with CNN 

ResNet-50 is a convolutional neural network that belongs to the ResNet family, composed of 48 Convolutional 

layers, 1 MaxPool layer, and 1 Average Pool layer. It is developed based on the deep residual learning 

framework to address the vanishing gradient problem that occurs in highly complex neural networks. Despite its 

50 layers, ResNet-50 features a comparatively low number of trainable parameters, with only 23 million, which 

is substantially lower than several other prevalent neural network architectures. 

While there are ongoing discussions regarding the reasons for its high performance, one straightforward 

approach to understanding ResNet's effectiveness is to explain how residual blocks function and operate. 

Suppose we have a block in a neural network that takes an input x, and our goal is to learn the actual distribution 

H(x) of the data. In this case, we can represent the deviation or difference between the expected and observed 

output as a residual: 

𝑅 𝑥 = 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑖𝑛𝑝𝑢𝑡 = 𝐻 𝑥 − 𝑥 ------ (10) 
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Rearranging it we get, 

𝐻 𝑥 = 𝑅 𝑥 + 𝑥 ------ (11) 

ResNet-50 is a type of deep convolutional neural network that consists of 48 convolutional layers, along with 

one max pooling layer and one average pooling layer. To address the vanishing gradient problem commonly 

encountered in deep neural networks, ResNet-50 utilizes shortcut connections that allow for the skipping of 

blocks of convolutional layers. By utilizing residual blocks, the network can learn the residual output, R(x), 

while also reusing activation functions from previous layers through identity shortcuts. 

Our approach for recognizing malware byteplot images involves using ResNet-50 as the underlying model. For 

our malware classification task, we employed the initial 49 layers of ResNet-50, which were pre-trained on the 

ImageNet dataset for object detection. These layers were utilized as feature extraction layers, with their 

parameters frozen, enabling us to produce bottleneck features for our malware images. Subsequently, we trained 

a fully-connected softmax layer consisting of 25 neurons using these features, corresponding to the 25 malware 

classes. Finally, we replaced the original fully-connected softmax layer consisting of 1,000 neurons with the one 

we trained. This approach enables us to leverage the extensive pretraining of ResNet-50 on ImageNet, 

eliminating the need to collect and annotate a large number of malware samples. 

3.2.2 Convolutional Neural Network 

Convolutional neural networks (CNNs) use convolutional layers to apply filters or kernels to input signals or 

images, producing feature maps. Each unit in the feature map is connected to a small region of the previous 

layer through kernel weights, which are adjusted during training using backpropagation to improve the model's 

performance. Due to the sharing of kernels across all units in a feature map, CNNs have fewer trainable 

parameters than fully connected (FC) layers, resulting in better generalization and ease of training. Moreover, 

CNNs are translation invariant, allowing them to detect spatial features regardless of their location. CNNs can 

capture information about the local region of each neural unit through the use of kernels.  

Architecture of CNN: The architecture employed in this study utilizes the Leaky Rectifier Linear Unit 

(LReLU) activation function for all layers that carry weights, except for the last layer, which employs softmax. 

LReLU is comparable to the ReLU activation function, but with the additional benefit of enabling a small non-

zero gradient for negative input values. This attribute addresses the vanishing gradient issue that ReLU can 

cause. Several image classification tasks have shown that using LReLU activation function can improve the 

performance of CNNs. In this architecture, LReLU is used to enhance the accuracy of the brain tumor 

segmentation task: 

The activation function's primary role is to nonlinearly transform data. In this architecture, the Leaky Rectifier 

Linear Unit (LReLU) activation function is used with a leakiness parameter (α) to prevent the vanishing gradient 

problem. Dropout is only used in the fully connected layers to improve the model's performance. 

𝑯 = −  𝑐𝑗 ,𝑘 𝑙𝑜𝑔 𝑐𝑗 ,𝑘 𝑘𝑗   ------ (12) 

where c is target and cˆ is its probabilistic prediction. 

3.3 Optimization using Believed Adam Optimization  

Adam is a stochastic optimization algorithm that is part of the family of metaheuristics due to its variable 

learning rate. Its effectiveness in training deep learning models such as CNNs, DNNs, and RNNs has led to its 

widespread use in the field. 

Adam is a combination of the advantages of AdaGrad and RMSProp. The model's parameter optimization is 

achieved through the use of the backpropagation technique, which calculates the gradients of the objective 

function with respect to the parameters. To update the parameters, the model utilizes the first and second 

moments of the gradients, which are moving averages of the gradients and squared gradients, respectively. The 

parameter update process is achieved using this information. 
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𝑚𝑡 ← 𝛽1. 𝑚𝑡−1 +  1 − 𝛽1 . 𝑔𝑡 ------ (13) 

𝑣𝑡 ← 𝛽2. 𝑣𝑡−1 +  1 − 𝛽2 . 𝑔𝑡2 ------- (14) 

To address the issue of bias in the estimations, Adam applies bias correction to the moments. Specifically, it 

uses the exponential moving averages of the first and second moments of the gradients with decay rates of 1 and 

2 respectively, and corrects for the initial bias of these estimations. 

𝑚𝑡 ←
𝑚 𝑡

1−𝛽2
𝑡  ------- (15) 

𝑣𝑡 ←
𝑣𝑡

1−𝛽2
𝑡  ------ (16) 

 Adam uses both moments to update the parameters wt, i.e., 

𝒘𝒕 ← 𝒘𝒕−𝟏 − 𝜶.
𝒎𝒕

 𝒗𝒕+𝝐
 -------- (17) 

The Adam optimizer uses a smoothing term to avoid division by zero and has a hyperparameter for limiting the 

effective step size during training. This helps prevent the model from overfitting and results in faster 

convergence compared to the Stochastic Gradient Descent (SGD) optimizer. Despite having a similar theoretical 

convergence rate to SGD, Adam has shown to perform better in practice. 

3.4 Image Denoising using Superior MLP Model 

Artificial Neural Networks (ANNs) have been around since 1943 and are based on the brain's models and 

neurons. ANNs can learn intricate connections between input and output vectors. Various types of ANNs exist, 

including feedforward, recurrent, spiking and radial basis function networks. Feedforward neural networks 

(FFNs) are composed of one or more input and output layers, as well as one or more hidden layers, with parallel 

neurons. If an FFN has a single hidden layer, it is known as a multilayer perceptron (MLP). The input layer 

neurons in an FFN are exclusively designed to receive input vectors, and the output from the previous layer's 

neurons is connected to the other neurons in every subsequent layer. The number of neurons in the input and 

output layers corresponds to the number of problem inputs and outputs, respectively. Although the number of 

neurons in the hidden layers is arbitrary, some studies employ stochastic optimization methods to determine this 

parameter.  

ANNs can learn by modifying the weights and biases of connections between neurons to achieve the desired 

outputs. This process involves presenting the network with input and output examples, comparing its predictions 

with the desired output, and updating the weights and biases to minimize the error between the predicted and 

desired outputs. Researchers have introduced various stochastic and deterministic techniques, including 

gradient-based methods and Particle Swarm Optimization (PSO), to optimize the network's weights and biases 

for improved performance on the task. 

This research utilizes MLP for the classification of brain tumors according to their grades using MRI images. 

The hidden and output layers of MLP are activated by tangent and purelin functions, respectively. The tangent 

function generates values within the range of -1 to +1, whereas the purelin function generates linear output. To 

produce the MLP output, the weights and biases undergo three stages of calculation: 

1. The inputs are multiplied by the weights and added to the biases for each neuron in the hidden layer. 

2. The outputs of the hidden layer neurons are then multiplied by the weights and added to the biases for 

each neuron in the output layer. 

3. Finally, the output of the output layer neurons is passed through the activation function to produce the 

predicted output. 

Step 1 at first, the sum of weighted inputs is computed as (18) 

𝑅𝑗 =   𝑊𝑖𝑗 , 𝑦𝑖 +𝑙
𝑖=1 𝐵𝑗  ----- (18) 
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Step 2 the activation function is applied to the weighted input sum of each hidden node to produce its output. 

(19) 

𝑅𝑗 = 𝑡𝑎𝑛s𝑖𝑔 𝑟𝑗 =
2

1+𝑒𝑥𝑝⁡(−2×𝑟𝑗 )
− 1 ----- (19) 

Step 3. The final output is calculated by taking the weighted sum of the output from the hidden nodes and 

applying an activation function, which maps the output to a desired range or output format. The activation 

function is usually a non-linear function and is typically chosen based on the problem being solved. For 

example, in binary classification problems, the sigmoid function is often used as the activation function for the 

output layer, while in multiclass classification problems, the softmax function is commonly used. (20) and (21) 

𝑓 =   𝑊𝑗 , 𝑅𝑖 + 𝐵,𝑕
𝑗=1  ----- (20) 

𝐹 = 𝑝𝑢𝑟𝑒𝑙𝑖𝑛 𝑓 = 𝑓 ------- (21) 

3.5 Segmentation using Adaptive UNet architecture  

Our approach enhances the domain adaptive UNet architecture by building on top of it. The UNet design 

includes a U-shaped encoder-decoder structure, which can be seen in Figure 1. The encoder is located on the left 

side of Figure 3 and uses max-pooling (indicated by red arrows) and double convolution (indicated by blue 

arrows) to decrease the image size by half and double the number of feature maps. As shown in the lower half of 

Figure 3, decoders follow encoders in a one-to-one ratio.  

The decoder in our model reduces the number of feature maps by using a double convolution after a bilinear 

upsampling operation. The enlarged feature map is then concatenated with the output of the previous encoder 

using skip connections. These skip connections allow the model to output predictions for a variety of input sizes. 

Finally, a 1x1 convolution is used to generate a single feature map that represents the predicted value of the 

network. 

 

Figure 2 Adaptive UNET architecture 

Figure 3 illustrates the original design of Adaptive UNET, where the input image size is set to 572 x 572 x 3. 

However, many studies use a standard size of 128 x 128 x 3 pixels. This requires experts to carefully analyze the 

images from different storage locations to obtain the best possible results. 

The UNet model can handle various input sizes, and multiple scales may be necessary for specific applications. 

UNets are typically used for pixel-level classification and segmentation tasks. However, we utilized the UNet 
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model for time series prediction, where the model predicts the exact value of each pixel. Our Small Attention-

UNet (SmaAt-UNet) model improves upon the original UNet architecture by incorporating the CBAM attention 

mechanism into the encoder.  

Iv. Results And Discussion  

 

Figure 3 accuracy 

The figure 3 shows accuracy the x axis shows epochs and the y axis shows training accuracy. 

 

Figure 4 training loss 
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The figure 4 shows training loss the x axis shows epochs and the y axis shows training loss. 

 

Figure 5 ROC curve 

The figure 5 shows ROC curve the x axis shows false rate and the y axis shows true positive rate. 

 

Figure 6: Image enhancement result 

 

Figure 7 histogram 
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Figure 8: Segmented Result 

Table 1 presents the number of true positive predictions, false positive predictions, false negative predictions, 

and true negative predictions. The fraction of real positive samples accurately detected by the model is measured 

as sensitivity. The suggested approach has the maximum sensitivity, meaning that it detects positive samples 

better. The percentage of projected positive samples that are really positive is measured by Positive Detection 

Probability. The suggested system has the greatest positive detection probability, implying a reduced false 

positive rate. The percentage of projected negative samples that are really negative is measured by Negative 

Detection Probability. The suggested system has the greatest negative detection probability, implying a 

decreased false negative rate. The False Discovery Rate is the percentage of projected positive samples that turn 

out to be negative. The suggested system has the lowest false discovery rate, implying a reduced false positive 

rate. Mean Squared Error (MSE) measures the average squared difference between predicted and actual values. 

The proposed system has the highest MSE, indicating larger prediction errors. Peak Signal-to-Noise Ratio 

(PSNR) compares the maximum power of a signal to the power of corrupting noise. The proposed system has 

the highest PSNR, implying better image quality. The geometric mean of sensitivity and negative detection 

probability is denoted by G-Mean. The suggested system has the greatest G-Mean, suggesting that it has a 

superior balance between sensitivity and the chance of detecting a false positive. The fraction of accurately 

predicted samples is measured by accuracy.  

Table 1 performance metrics 

Performance 

metrics 

Algorithms  

 CNN VGG 16 Proposed system (Hybrid) 

True Positives 7652 8547 11990 

False Positives 6054 7584 10670 

 

False Negatives 5204 4851 10464 

True Negatives 6458 6855 9312 

Sensitivity 0.0651548763219857 0.087851236952584 0.5339805825242718 

Positive Detection 

Probability 

0.054863214587965 0.124578965348754 0.529126213592233 
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Negative Detection 

Probability 

0.3548612345784512 0.2216495321546542 0.470873786407767 

False Discovery 

Rate 

0.2651348953261478 0.2123654861235124 0.470873786407767 

Mean Squared 

Error 

0.000651234578956213 0.000154236895231456 0.004856325197160709 

Peak Signal-to-

Noise Ratio 

11.15423652846123 13.23564895632145 23.13692239024306 

G-Mean 0.1212154895461232 0.2546138957489561 0.4988439836374807 

Accuracy 0.3215648956231542 0.5321658974561235 0.9951456310679612 

Precision 0.3512465897461325 0.5489713265489745 0.990909090909091 

Recall 0.2546891523478561 0.6458912347859456 1.0 

F1 score 0.4561235789456123 0.7564213954682135 0.995433789954338 

Test loss 0.002135648975461257 0.009856235689741256 0.1900242418050766 

Test accuracy 0.6321548956321547 0.8654124789562314 0.9951456189155579 

 

 

Figure 9 Performance metrics 

The performance metrics are shown in Figure 9. The values are shown along the y axis, while metrics are shown 

along the x axis.  
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Figure 10 Performance metrics 

The performance metrics are shown in Figure 10. The values are shown along the y axis, while metrics are 

shown along the x axis. 

 

Figure 11 Performance metrics 

The performance metrics are shown in Figure 11. The values are shown along the y axis, while metrics are 

shown along the x axis. 

 

V. Conclusion  

In conclusion, we have presented a novel approach for pest detection in pest images using image denoising and 

cascaded UNET segmentation. Our proposed method achieves higher accuracy and better performance 

compared to existing methods. The image dataset training using a hybrid neural network RESNET50 with CNN 

optimization using believed Adam optimization, image denoising using a superior MLP model, and adaptive 

UNET architecture for image segmentation are the key components of our method. Our methodology highlights 
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the efficiency of utilizing deep learning techniques in the domain of pest detection and underscores the 

possibilities for future enhancements and advancements in this domain. Future work can focus on applying our 

proposed method to other types of pests and diseases, as well as exploring the possibility of using other types of 

neural networks and optimization techniques. Overall, our work contributes to the advancement of pest 

detection and prevention, which is critical for ensuring food security and improving agricultural practices. 
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