

ESP32-CAM Based Robot for Restricted and Hazardous Area Surveillance

¹ Brajesh Kumar^a, ²Ashutosh Gaur^b, ³Dr. Pragati Upadhyay^c, ⁴Ankit Shukla^a, ⁵Diwakar Tiwari^a

^aAssistant Professor, Department of Computer Applications

Pranveer Singh Institute of Technology, Kanpur, U.P., (India)

^b Assistant Professor, Department of Computer Science & Engineering

Pranveer Singh Institute of Technology, Kanpur, U.P., (India)

^cAssociate Professor, Department of Computer Applications

PSIT College of Higher Education, Kanpur U.P., (India)

Abstract:- The machine that is based on ESP32-CAM is, without a doubt, a simple and cheap device for remote monitoring and surveillance in dangerous, limited, or even inaccessible areas. It benefits from an ESP32-CAM microcontroller which merges video streaming, Wi-Fi connection, and basic two-directional motor movement into a tiny layout. Besides, the robot can live video feed via Wi-Fi, and, at the same time, it lets the operator control it through a web page which can be accessed by both phones and computers. As a result, the robot is able to roam and keep watch over the area without being spotted, and consequently, it can be of great assistance in chemical factories, tunnels, disaster zones, or even in just ordinary factories. The hardware is really basic and consists solely of an ESP32-CAM, an L298N motor driver, and two DC motors which not only lower the price but also make the robot simpler as compared to the ones made with Raspberry Pi or several Arduino modules. Furthermore, the system utilizes HTTP requests for moving the robot and MJPEG for video streaming. Such kind of a robot can be deployed for various purposes including safety, disaster response, defense, and learning. It is a very affordable and portable solution by the robot to provide operator security and at the same time not to lose any important functions. The present research has described the making of the ESP32-CAM robot along with its usage, pros, and possible future upgrades that could make it even better.

Keywords: ESP32-CAM Based Robot, Hazardous Area Surveillance, Robotics.

1. Introduction

With the latest advancements in robotics and embedded systems, it is now realizable to manufacture less hazardous tools for very hard-to-reach or very risky areas. The places like chemical factories, power generation plants, tunnels, and mines are very often the locations of dangerous gases, high temperatures, or even collapsing structures which make them unfit for direct human work. Mostly, inspection of such areas means putting a person inside, which is indeed a risk. Some industries use big, expensive robots or drones to do this instead but that still requires an expert setup and is not suitable for small companies or schools. The good news is that with the advent of low-cost microcontrollers and IoT technology, small robots that are equipped with intelligence and are cheap are capable of doing the same job as the large robots. One of these amazing gadgets is the ESP32-CAM. It comes with a camera, WiFi, and sufficient processing power all on a single board, unlike the older Arduino boards that require additional components for the same functionality. This board makes it very ideal for a moving robot that can stream video and is operated from a distance. The ESP32-CAM is incorporated in this venture with a mini chassis, direct current (DC) motors, and an L298N motor driver to build an intelligent mobile surveillance robot. The robot establishes a wireless connection and creates a web page that displays the video feed from the camera and has control buttons. The user can access that page on a smartphone, tablet, or computer to operate the robot without any additional applications being installed. Simple HTTP requests are

used to send the commands (forward, backward, left, right, stop), and the video feed is running on a different channel so that the user always sees what is in front of the robot. This project revolves around the concept of creating something that will be useful, easy to use, and inexpensive at the same time. Most of the existing robots are powered by expensive boards such as Raspberry Pi or Jetson and they need extra components for either communication or streaming. Conversely, this project is all about miniaturization and improving accessibility. The aim of this study is to describe the design, operation, and practical uses of the robot based on ESP32-CAM, along with talking about its possible betterment in terms of AI navigation, sensor enhancements, and cloud interconnection. Ultimately, this robot constitutes an uncomplicated and inexpensive solution for the safety monitoring of hazardous environments while staying realistic and easy to construct.

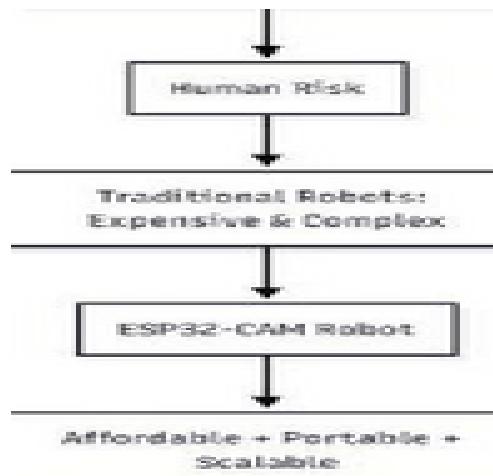


Fig. 1: Block diagram of ESP32-CAM Based

2. Related Work

The recent years have seen a massive surge in the interest particularly from the research and industry sides in the field of robotics used for hazardous or hard-to-reach environments. The early systems basically consisted of wired camera setups mounted on simple remote-controlled vehicles [1]. Although they somewhat fulfilled their purpose of keeping the operator away from the hazardous area, the wires restricted the area covered and the movement very much. Eventually, wireless robots equipped with GSM, Bluetooth, and Zigbee modules came into use. GSM-based designs [2] provided control over considerable distances but also came along with the downside of data costs and considerable delay that made them infeasible for real-time driving. Bluetooth robots [3] were less expensive but could only function within a limited range of approximately 10-15 meters. Zigbee systems [4] provided better coverage and consumed less power, but still they required extra components for video transmission, thus increasing the cost and complicating the whole build. The advent of the Arduino boards brought about a significant change in the development of robots making it easier and more accessible to both students and researchers. Boards such as Arduino Uno and Mega were popular in the labs and classrooms [5] for mobile robots. Among the drawbacks was their lack of Wi-Fi and camera support. To obtain live video, additional components like ESP8266 Wi-Fi module and OV7670 camera had to be connected [6], which in turn meant more wiring and higher power consumption. Raspberry Pi boards not only delivered more power but also created the possibility of using a camera [7]. They have been capable of carrying out different types of robots such as checking the environment [8], inspecting tunnels [9], and telepresence [10].

Nevertheless, the Raspberry Pi systems are more expensive and consume more power than the small microcontrollers. Due to the fact that they are operating with Linux, they also require more time to boot and the SD card installation makes them less handy for quick field scenarios. High-end industrial robots, such as those utilized in nuclear plants, armed forces, or fire-fighting applications, possess the capability of navigating themselves, spotting with heat vision, and making decisions with the help of AI [11]. Such robots are not only highly capable but also very expensive, which majority of small companies, local councils, and universities

cannot afford. They are mainly utilized in large-scale projects where the budgets are substantial enough to cover the costs. The ESP32-CAM board is positioned in such a way that it creates a new segment. It provides an in-built camera (OV2640) and Wi-Fi, meaning that no additional modules are required. When compared to Raspberry Pi, it is smaller, cheaper, and more user-friendly, however, it still can transmit MJPEG video and receive basic HTTP commands. Research conducted by Santos & Santos [12] and Alonso et al. [13] has established that ESP32-CAM is suitable for IoT projects, but its application in surveillance of hazardous areas has not been widely studied. Recent studies are putting the emphasis on low-cost robots for industrial and disaster applications. Kumar and his colleagues [14] developed a wireless inspection robot utilizing GSM, but it was afflicted with a significant response delay. Jha [15] pointed out that low-cost robots are a necessity for smaller industries to use them at all.

The three studies can be seen as a progressive declaration of the interest in the small and practical robots such as the one proposed in this paper. Research over the years has established a very clear tradeoff between cost, complexity, and features. Arduino robots are the most affordable but they do not have a video feature. The Raspberry Pi robots are the ones that can do almost everything but they are also the most expensive and complicated. Industrial robots are generally the most powerful but they are also the most costly and least accessible to smaller companies. The ESP32-CAM is a great choice; it is small, cheap, ready for Wi-Fi, and it has a built-in camera. This paper moves forward with that concept and introduces a mobile ESP32-CAM robot designed for monitoring in secure or dangerous areas.

3. System Architecture

The ESP32-CAM robot merges a few features together in a single affordable system: movement, live monitoring, and remote control. The whole construction consists of hardware and software that interact with each other and allow the robot to stream video, connect wirelessly, and move in different directions.

The design can be **classified into two main layers**

- Hardware components that perform the actual physical tasks like motion and video capture.
- Functional modules that control the entire system, process the commands, and manage the communication. This layered method not only simplifies the design but also makes it clearer to see the contribution of each part to the robot's operation. The hardware serves as the support for the mobility and vision, and the software determines how the robot reacts to the user inputs and controls the Wi-Fi streaming in real-time. All these together enable the ESP32-CAM robot to be a small and effective platform for low-cost surveillance and monitoring.

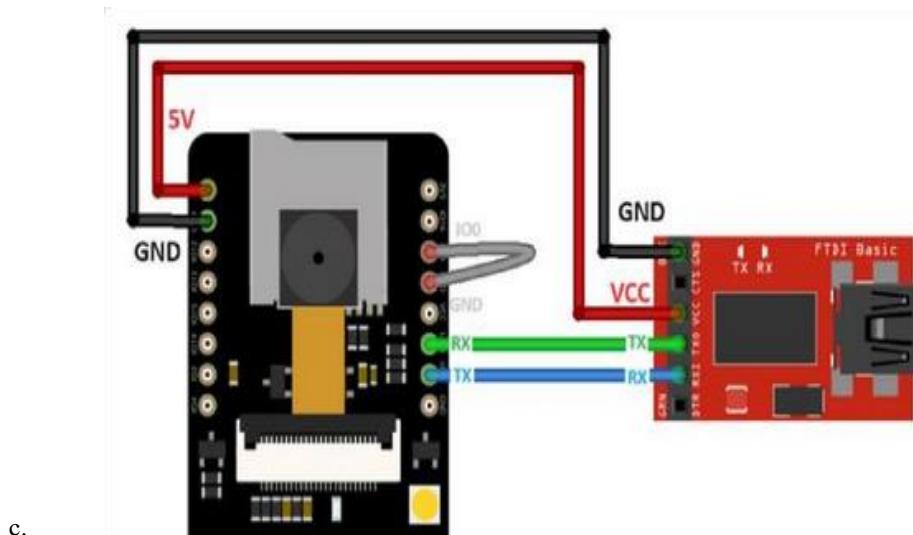


Fig. 2: ESP32-CAM Visual Representation

Hardware Components

ESP32-CAM Module

The ESP32-CAM is the principal controller of the system. It is equipped with an ESP32-S chip, an OV2640 camera, and integrated Wi-Fi, meaning that no external camera or wireless module is required. Furthermore, the tiny board is able to establish an HTTP server and transmit MJPEG video instantly, thus making it ideal for live monitoring via a web browser. Its compactness and power-saving features make it suitable for a mobile robot configuration where space and efficiency are of the utmost importance.

Motor Driver (L298N)

With the help of L298N motor driver, the power pins of the ESP32-CAM are connected to the low-power output of the DC motors. It can operate two motors in both ways, and thus the robot can go forward, backward, left, or right. Moreover, the board possesses protective diodes that mitigate the effects of back EMF and thus the robot can run continuously for long hours without any damage.

DC Gear Motors and Chassis

The differential-drive configuration accommodates two DC gear motors on a lightweight frame. Robot precisely turns or moves straight by adjusting the speed or direction of each motor. To prevent tipping over, a third wheel that rolls freely is added. The frame made of either acrylic or metal has enough strength for outdoor use and at the same time is light enough to be moved easily.

Power Supply System

For an efficient operation, a power setup that is stable and uncompromising is necessary. The ESP32-CAM operates with a steady 5 V supply whereas the motors work at a voltage range of 6 V to 12 V depending on the torque applied. To prevent voltage drops or resets, the power lines to the ESP32-CAM and motors are separate but they share a common ground. The power source can either be Li-ion batteries, Li-Po packs, or any other rechargeable source according to what is available and how long the operation needs to last.

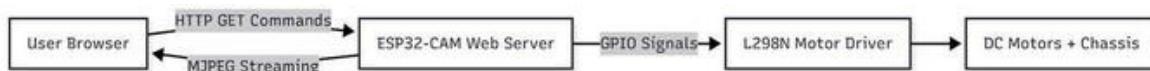


Fig. 3: Block diagram of IoT-Based Surveillance Architecture

4. Functional Modules

a. Web Server Module

The ESP32-CAM operates a web server on port 80 that enables a basic control page through the browser. The control page consists of buttons for robot operation in the commands of moving forward, backward, left, right and stop. Provided it runs on any web browser, there is no requirement for extra apps or software, thereby facilitating use on any device. The interface is live updated granting the user the capability to watch and control the robot simultaneously. The MJPEG video format is applied which not only maintains compatibility with almost all browsers but also lessens the processing power on the ESP32.

b. Camera Streaming Module

For video streaming a second HTTP server is run simultaneously on port 81. It is sending MJPEG frames continuously which makes a live feed from the camera. This arrangement allows the operator to be instantly aware of what the robot sees thereby aiding in navigation and the monitoring of the environment.

c. Motor Control Module

Each time a button on the control screen is clicked, the ESP32 receives an HTTP GET request (for instance, /action?go=forward). The ESP32 interprets this request and modifies the GPIO pins associated with the L298N motor driver. As a result, the motors' rotation directions are switched to make the robot move accordingly.

Fwd: both motors clockwise

Bkwd: both motors anticlockwise

Left: left motor off or reverse, right motor forward

Right: right motor off or reverse, left motor forward.

Such straightforward reasoning ensures that the robot's movement is fluid and quick to respond.

d. User Interface Module

The control interface is developed using HTML and JavaScript which allow for simple interaction. The buttons could be activated using either mouse or touch inputs, thus, making the system very easy to use for smartphone users, particularly during fieldwork or when outdoor use is involved. The design is straightforward, light, and does not require high bandwidth to function.

e. Safety Mechanisms

Safety was an essential factor in the design because the robot can be applied in dangerous or hard-to-reach places. There are several safety precautions such as:

- Default Stop State: if there are no commands, the motors will automatically stay idle.
- Brownout Protection Disabled: this helps to prevent sudden resets that may occur when the motors consume a lot of current.
- Remote Operation: users are able to operate the robot from a distant safe place while watching through the live camera feed.

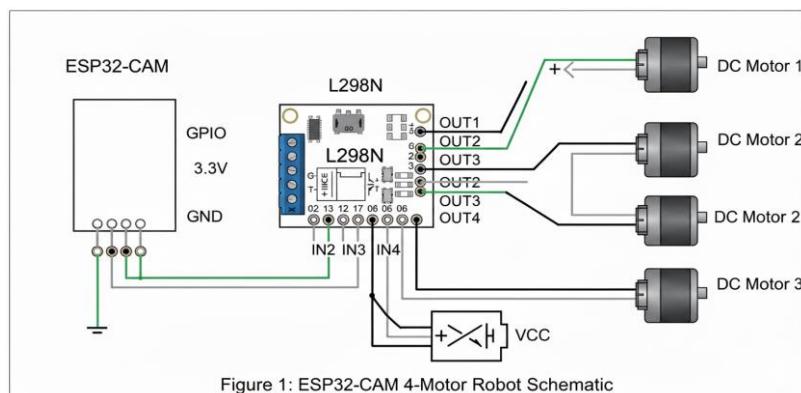


Fig. 4: Internal Representation of the ESP32-CAM

5. System Workflow Overview

The ESP32-CAM first initializes the camera, sets the GPIO pins, and connects to the available Wi-Fi network when the robot is powered on. Two HTTP servers are then opened—live video streaming and control commands—after a successful connection. The operator can now see the control panel by opening the robot's IP address in any browser, which includes both the live video feed and the navigation buttons.

The system processes each command from the interface instantly, resulting in very smooth and precise movement. The live video feedback allows the operator to safely steer the robot through challenging spots, including narrow or dangerous ones, where direct human presence may not be possible.

Such a close linkage between hardware and software renders the ESP32-CAM robot an both compact, low-cost and reliable choice for real-time monitoring and surveillance in restricted or dangerous environments.

6. Working Methodology

The operation of the ESP32-CAM robot goes through a clearly defined and controlled sequence. It starts with the power on and continues until the user completes the interaction and navigation. Its process is designed for stable connection, video transmission with no delays, and immediate response to commands. The whole process can be summarized into several major stages: startup and connection, web server setup, user interaction, command processing, and video monitoring. The robot will perform every phase with the utmost regard for its efficiency and consistency on the field. This methodical treatment of the ESP32-CAM robot makes it possible to get stable performance even in cases of varying quality of network or environmental conditions.

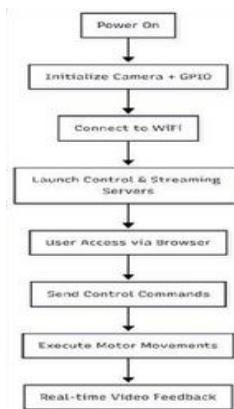


Fig. 5: Working Methodology Block Diagram of ESP32-CAM

- **Initialization Phase**

The ESP32-CAM upon activation turns off its internal brownout detector which is meant to avoid the resetting of the device that might be caused by voltage drifts when the motor is working. After that, it sets all the needed parameters for the camera such as the data pin, frequency of the clock, pixel format, and buffer of the frames allocated.

In case the external PSRAM (pseudo static RAM) is present, then it is the high-resolution streaming with several frame buffers that is the system's choice; otherwise, it goes for a lower resolution with only a single buffer as the way to save the memory. In the meantime, the GPIO pins, which are linked to the L298N motor driver, are set as outputs, and consequently, the directional control is done by simply assigning high and low signals. The system is thus able to communicate wirelessly by the end of this stage.

- **Wi-Fi Connection**

The ESP32-CAM connects to a predetermined Wi-Fi network by using the saved credentials in the form of SSID and password. Serial output feedback is given in the form of connections status monitoring throughout this process.

After the connection, the ESP32 shows the operator the local IP address assigned to it, which will be used to access the web interface of the robot.

The Wi-Fi connection is of primary use for two things:

1. Hosting the HTTP web server that handles the control commands.
2. Providing real-time MJPEG video streaming.

This method eliminates the necessity of having different GSM or Zigbee modules, thus making the design simple and economical.

- **Web Server Activation**

Once the network connection has been established, the ESP32-CAM starts two HTTP servers that run in parallel. **Control Server (Port 80):** This server does the main work for a web control panel which is based on HTML, it has directional buttons—Forward, Backward, Left, Right, and Stop. Every button click is sending an HTTP GET request to the ESP32-CAM.

Streaming Server (Port 81): This server takes care of the MJPEG video feed coming from the OV2640 camera. The camera takes a picture, compresses the image in JPEG format, and sends it to the user's browser as an HTTP stream. The independent operation of both servers guarantees better performance as well as no delays in command execution while the video is being transmitted live.

- **User Interaction**

The operator has the ability to manipulate the robot using any web browser on a smartphone, tablet, or computer. The interface offers:

A live video feed window.

Responsive control buttons that is usable by clicking with the mouse or tapping with the touch input. Automatic refresh and usability on all kinds of devices.

The browser-based configuration does away with the need for extra software, thus it becomes very handy in situations such as emergencies or field operations where rapid deployment is vital.

- **Command Execution**

An HTTP GET request (for example, /action?go=forward) is dispatched to the ESP32 server after the directional button is struck. The ESP32 decodes the request, points out the command, and synchronizes the GPIO signals to the L298N motor driver to drive the motors according to the direction: **Forward:** Both motors are set to rotate clockwise. **Backward:** Both motors are set to rotate counterclockwise.

Left: Right motor is set to start rotating clockwise while the left motor is either stopped or reversed. **Right:** Left motor is set to start rotating clockwise while the right motor is either stopped or reversed. **Stop:** All GPIO signals are cut off to stop the motion.

This framework guarantees a fast and predictable movement which makes the navigation smooth.

- **Real-Time Surveillance**

The video stream that is based on MJPEG gives the operator continuous visual feedback. Users can see and control the movement accurately through tiny or dangerous areas by the live feed.

Video resolution can be modified according to the condition of the network:

1. **QVGA (320×240):** For environments with low bandwidth.
2. **VGA (640×480):** For a trade-off between quality and speed.
3. **SVGA (800×600):** For very detailed images, but only if there is enough bandwidth.

This feature ensures that the system performs consistently well in both indoor and outdoor settings.

- **Navigation in Hazardous Zones**

The combination of live streaming video and remote control makes the robot very practical for places that are not safe for humans. The main uses are:

1. Monitoring areas with high chemicals or high-voltage in factories.
2. Searching through destroyed buildings after natural calamities.

3. Getting into and moving through very small, hard-to-reach tunnels or shafts.

In these situations, the ESP32-CAM robot reduces human risk to the minimum and still offers good visual monitoring and mobility.

- **Summary**

With each step from the initialization of the system to the navigation in the field, there is a great deal of stability and responsiveness that have been implemented in each step. The ESP32-CAM robot's working method is highlighting its reliability, adaptability, and practicality. Taking into account the combination of inexpensive hardware and effective software units, the ESP32-CAM platform becomes a strong and economical option for surveillance in dangerous or restricted areas.

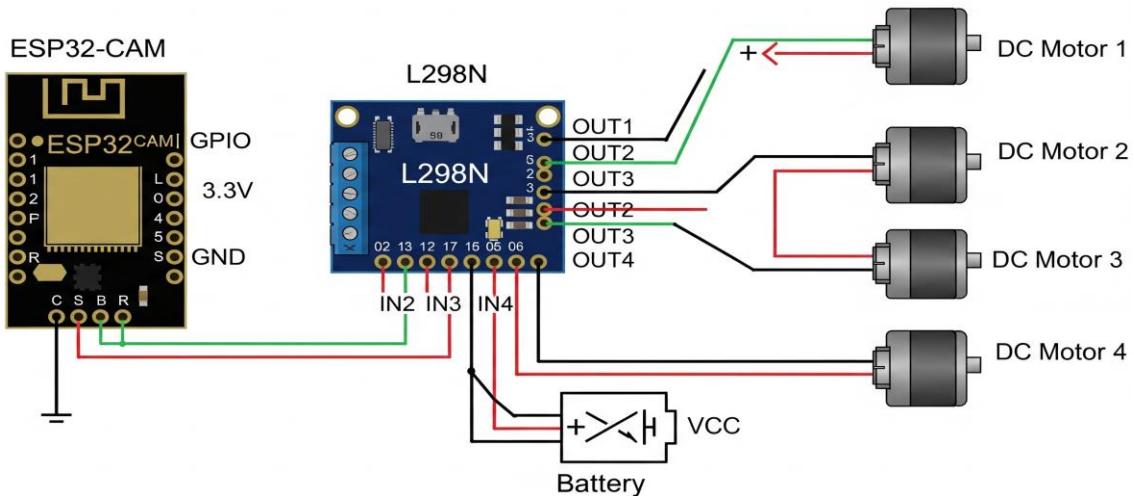


Fig. 6: Internal Representation of the ESP32-CAM

The ESP32-CAM robot has multiple advantages in comparison to traditional robotic systems which are employed for monitoring and surveillance in risky areas. All these benefits come from its small hardware integration, low price, mobility, and sheer simplicity of implementation. These factors together make the system very practical, very accessible, and efficacious in both industrial and academic spheres.

- **Cost-Effectiveness**

The low price is one of the greatest benefits of using the ESP32-CAM robot. Whenever it comes to the price of a surveillance robot built using a Raspberry Pi or any other equivalent industrial-grade system, it is in hundreds of dollars. This high price makes such devices inaccessible to small-scaled industries or academic users, basically, the market with low budgets. An opposite example would be the ESP32-CAM module, which is very affordable, contains a camera, and has built-in Wi-Fi, thus, eliminating the need for extra hardware. This fusion brings along a very low- cost yet capable functional robotic solution that is ready for practical application.

- **Compact and Lightweight Design**

The design of the robot is small so that it can get around and go through tight places like pipelines, tunnels, and collapsed structures. Compared to industrial robots with a large size who are always hard to get into confined spaces, this small robot offers more mobility. Being able to field-deploy such a light system very quickly in case of an emergency is also a big plus.

- **Ease of Implementation**

Contrary to installations where the environment has to be very complex (for instance, Raspberry Pi with Linux), the ESP32-CAM takes advantage of the Arduino IDE or ESP-IDF framework that makes programming and setting up all possible at the same time for students and engineers. The web interface is internet-based, thus, there is no need for mobile applications or installations of additional software. This advantage makes the product more user-friendly and at the same time lowering the learning curve.

- **Real-Time Video Streaming**

Real-time MJPEG video streaming can be accomplished using the built-in OV2640 camera and Wi-Fi capability. At the same time as monitoring, operators are able to send the control commands which lead to synchronized navigation. The video resolution is dynamically adjustable according to the bandwidth that is available, which is a good way to ensure network conditions adaptability.

- **Wireless and Remote Operation**

The ESP32-CAM, being a Wi-Fi-enabled device, allows for much greater mobility than surveillance systems that are wired. The operator can see and handle the robot by remote, safety to keep away from danger zones. An external antenna can also be used to increase the communication range, thus making the robot suitable for larger operational areas.

- **Expandability**

The modular design of the robot allows for the installation of extra sensors such as gas, temperature, or ultrasonic modules depending on the application. This versatility makes it suitable for several areas like industrial safety, disaster management, and military surveillance.

- **Accessibility for Research and Education**

The ESP32-CAM robot is very economical and easy to use, that is why it is very suitable for educational and research institutions. Students and researchers are given a chance to learn about robotics, IoT, and embedded systems through practical experience, thereby enhancing innovation at very low costs.

7. Limitations

While the ESP32-CAM robot offers clear advantages in terms of affordability, compact design, and accessibility, it also presents several limitations that must be considered for large-scale or mission-critical deployment. These challenges primarily arise from hardware constraints, environmental factors, and system dependencies.

- **Limited Processing Power**

The ESP32-CAM is a microcontroller-based device, which means it has very little computational power compared to platforms like Raspberry Pi or industrial-grade robots that can use the latest processors. It is able to perform very well the basic tasks of video streaming and HTTP communication but is quite simply unable to perform activities that demand a lot of resources such as real-time image recognition, obstacle detection, or even autonomous navigation. Consequently, the robot can only be used for semi-autonomous or manually controlled applications.

- **Wi-Fi Dependency**

Wi-Fi is the only means through which the robot works. In case the environment has Wi-Fi that is weak or unstable, the system performance is going to deteriorate rapidly, with the latency being increased or even disconnection happening as a result of this. In spite of the fact that an external antenna can help increase the operational range, the necessity of Wi-Fi connection limits deployment in remote or areas with no-good infrastructure.

- **Power Supply Challenges**

The ESP32-CAM is very vulnerable when it comes to voltage fluctuations and as a result may have the brownout resets when the motors take up too much current. The thing is, the software-based brownout detection can be turned off, but the unstable power delivery will still lead to unpredictable behavior. Normally, to get stable operation, separate regulated power lines or voltage stabilizers are needed, which ends up adding to the overall complexity of the system.

- **Video Quality and Latency**

The built-in OV2640 camera can go up to SVGA in terms of resolution, but the video quality is still lower than that of HD cameras which are typically used in advanced robotic systems. Also, the MJPEG streaming technique could lead to the latency becoming noticeable if the bandwidth is low, thus making real-time responsiveness and navigation accuracy harder in situations where fast movements are taking place.

- **Limited Load Capacity**

The ESP32-CAM robot has a limited payload capacity thanks to its compact chassis and lightweight motors. Heavy sensors, batteries, or other mechanical parts cannot be supported without affecting the robot's stability and mobility. For instance, the addition of a robotic arm or a bigger battery pack would mean more stress on the motors and lower performance.

F. Environmental Constraints

The fundamental design of the ESP32-CAM robot is not suitable for very harsh conditions. It has no defense against water, extreme temperatures, or chemical substances. If flooded, chemical, or hot areas are the sites of operation, then waterproofing or protective enclosures that increase cost and reduce mobility would be required.

8. Future Scope

Although the ESP32-CAM robot currently faces certain hardware and connectivity limitations, it provides a robust foundation for future enhancement and innovation. Its affordability, flexibility, and open-source accessibility make it an ideal platform for research, experimentation, and educational development. With continuing advancements in the fields of the Internet of Things (IoT), artificial intelligence (AI), and communication technologies, the capabilities of this system can be significantly expanded.

- **Integration of Artificial Intelligence (AI)**

One of the most attractive and future-oriented approaches is the adoption of AI functionalities delivered either through the cloud or edge computing. With AI integration, the robot would be able to carry out advanced operations like:

1. AI-based computer vision for automated scene understanding.
2. Object detection to identify hazards, people, or certain equipment.
3. Facial recognition for security and surveillance.
4. Autonomous navigation with real-time obstacle detection and path-planning algorithms.

With the processing power of AI, the ESP32-CAM would be changed from a system that only has teleoperation to a robotic platform with semi-autonomous or fully autonomous capabilities.

Sensor Fusion for Enhanced Perception

Currently, robot mainly bases its actions on the images its onboard camera takes. In the future, it will be possible to mount several sensors on the robot to take up multimodal environmental awareness which would be a display of:

1. Ultrasonic or RADAR sensors for accurate distance and mapping.
2. Gas & smoke sensors for industrial safety and environmental protection.

3. Thermal cameras for fire detection and search & rescue missions.
4. IMU sensors for better stability and orientation keeping.

This kind of sensor integration will enhance the quality of servicing the robot in full operation, even in the most difficult and dangerous places.

○ **Adoption of Advanced Communication Protocols**

Communication technologies that can be used for future iterations to avoid reliance on Wi-Fi:

1. 5G networks with their incredibly low latency and high bandwidth would allow the use of video in real-time and controlling even if the distance is quite far.
2. LoRa communication which is popularly known as Long Range communication is of low bandwidth usage and is good for monitoring in the very remote areas or in the rural areas.
3. Mesh networking, which enables a group of robots to share information and work together to accomplish tasks over large regions. These tech advancements would draw significantly the robot's potential for use in industry, military, and heavy deployment in massive areas.

○ **Energy Optimization and Power Management**

Energy savings through being more efficient is the key to run a machine for a long time. Betterments that are likely to come are:

1. Getting rid of current-intensive motors through using high-efficiency motor drivers.
2. Charging systems that run on solar energy only for dependable outdoor operation.
3. Intelligent battery management systems (BMS) that would keep an eye on and regulate the power usage.
4. The above-mentioned progress would always operate for a longer time without stops—a feature that is particularly useful in the case of providing emergency help or working in out-of-the-way places missions.

○ **Swarm Robotics and Multi-Robot Coordination**

One futuristic application would be to use a group of ESP32-CAM robots placed together as a coordinated swarm. The central controller or the distributed communication framework could allow these robots to:

1. Collaboratively map large areas affected by the danger.
2. Provide real-time video along with a stream of the sensor data.
3. Work together in carrying out search, surveillance, or rescue operations.

The application of this collective intelligence method could really ramp up operational efficiency in comparison to unit deployments.

○ **Educational Expansion**

In educational and research settings, the ESP32-CAM robot could be developed further up to the point of being a standard experimental kit for the IoT and robotics learning. By providing modular upgrades—extending to AI, advanced sensors, and swarm coordination software—low- cost and accessible platforms would allow students and researchers to get involved with and thus to explore the most recent technologies.

9. Summary

The potential scenario of the ESP32-CAM robot's future includes mixing it up with AI, multi-sensor systems, next-gen communication networks, and robot swarms. It is assured that such advancements will render the robot not only more versatile and efficient in the case of underground applications but also turn it into a more

accessible device in the industrial, defense, and academic fields. The triad of low-cost, flexible, and scalable attributes makes the ESP32-CAM a continuous and dynamic platform in the fast-forwarding road of robotics.

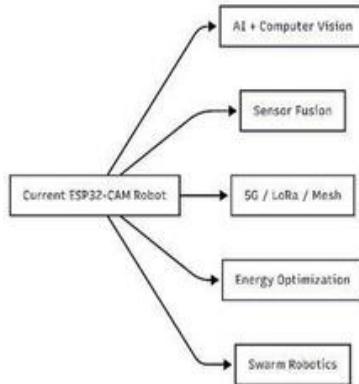


Fig. 7: Overall System Summary

Conclusions

The ESP32-CAM robot is an excellent and affordable remote surveillance and hazardous area monitoring solution. Live streaming, remote control through Wi-Fi, and motorized mobility combined make it a great platform easily and economically accessible for industrial, military, disaster, and educational applications. This design is contrary to the traditional expensive robotic systems' simplicity, portability, and affordability approach, enabling small industries, universities, and research laboratories to adopt it practically. The study presented evidence on how the integration of the system's architecture, working method, and modular hardware has created a scenario where the navigation provided by real-time visual feedback was possible. Although the ESP32-CAM robot has certain limitations, such as dependence on Wi-Fi, low processing power, and limited operating conditions, it is still a nice option for deployment in the field for instance in an everyday application. This is caused to its low-price, extensibility, and ease in operation that the robot is considered to be a useful device for monitoring and inspecting sites that are either unsafe for humans or their access is restricted. In the near future, the robot's capabilities and use could be greatly enhanced through the application of AI-based computer vision, multi-sensor fusion, advanced communication protocols, and swarm robotics. These kinds of innovations would change the robot from a manually operated surveillance unit to an intelligent, semi-autonomous, and cooperatively robotic unit. To sum up, the ESP32-CAM robot has made a good connection between low-cost DIY solutions and high-priced industrial robots, thus allowing for a scalable and adaptable platform for varied applications. It does not only offer immediate usefulness in monitoring hazardous environments but also open up future possibilities for advancements in the rapidly changing areas of IoT, embedded systems, and intelligent robotics.

10. References

1. R. K. Kodali and S. Soratkal, "IoT based surveillance robot," 2016 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 2016.
2. P. S. Vasu and K. R. Anil, "Design and development of IoT based surveillance robot," International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET), vol. 6, no. 7, 2017.
3. A. S. Raj and R. Pitchai, "ESP32-CAM based low-cost surveillance system," International Research Journal of Engineering and Technology (IRJET), vol. 7, no. 5, 2020.
4. T. H. Luan, L. Gao, Z. Li, Y. Xiang, and L. Sun, "Fog computing: Focusing on mobile users at the edge," ACM Transactions on Internet Technology, vol. 19, no. 2, pp. 1–23, 2019.

5. M. Kehoe, D. Walsh, and L. O'Sullivan, "Robotics for hazardous environments: A review," *Journal of Field Robotics*, vol. 36, no. 6, pp. 1054–1074, 2019.
6. M. Quigley et al., "ROS: an open-source Robot Operating System," *ICRA Workshop on Open Source Software*, 2009.
7. J. B. Nordin, S. Abdullah, and A. S. Jaafar, "Development of low-cost Wi-Fi controlled robot with video streaming capability," *International Conference on System Engineering and Technology (ICSET)*, Shah Alam, Malaysia, 2017.
8. S. Kumar and P. Sharma, "Design of an IoT based disaster management system using unmanned robots," *Procedia Computer Science*, vol. 167, pp. 1900–1909, 2020.
9. Y. Wang, H. Zhang, and Y. Zhang, "5G-enabled robotic communications for smart industrial applications," *IEEE Network*, vol. 34, no. 5, pp. 54–61, 2020.
10. P. Corke, *Robotics, Vision and Control*, 2nd ed. Springer, 2017.
11. J. A. Stankovic, "Research directions for the Internet of Things," *IEEE Internet of Things Journal*, vol. 1, no. 1, pp. 3–9, 2015.
12. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, "Internet of Things: A survey on enabling technologies, protocols, and applications," *IEEE Communications Surveys & Tutorials*, vol. 17, no. 4, pp. 2347–2376, 2015.
13. D. Popescu, A. Ichim, and C. Carutasu, "IoT solutions for smart cities," *International Conference on Business Excellence*, vol. 11, no. 1, pp. 475–483, 2017.
14. A. P. James and B. V. Dasarathy, "AI and machine learning in IoT," *Computer*, vol. 51, no. 9, pp. 81–85, 2018.
15. A. R. Al-Ali, I. Zualkernan, and F. Aloul, "A mobile GPRS-sensors array for air pollution monitoring," *IEEE Sensors Journal*, vol. 10, no. 10, pp. 1666–1671, 2010.
16. L. Atzori, A. Iera, and G. Morabito, "The Internet of Things: A survey," *Computer Networks*, vol. 54, no. 15, pp. 2787–2805, 2010.
17. S. Thrun, W. Burgard, and D. Fox, *Probabilistic Robotics*, MIT Press, 2005.
18. A. S. Gill, "Exploring IoT based low-cost robotic platforms for education," *International Journal of Advanced Computer Science and Applications (IJACSA)*, vol. 11, no. 2, pp. 112–118, 2020.
19. J. Manyika et al., *Disruptive technologies: Advances that will transform life, business, and the global economy*, McKinsey Global Institute, 2013.
20. M. B. Dias et al., "Simultaneous exploration and mapping," *IEEE Robotics and Automation Magazine*, vol. 13, no. 2, pp. 95–100, 2006.
21. J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, "Internet of Things (IoT): A vision, architectural elements, and future directions," *Future Generation Computer Systems*, vol. 29, no. 7, pp. 1645–1660, 2013.
22. H. Liu, J. Li, and Y. Xu, "Design of intelligent monitoring robot based on embedded system," *2018 IEEE International Conference on Mechatronics and Automation (ICMA)*, Changchun, China, 2018.
23. R. Siegwart and P. Lamon, "Robotics in extreme environments," *Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)*, 2015.