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Abstract 

Drug Target Interaction (DTI) prediction plays a crucial role in drug discovery by reducing experimental cost and 

accelerating candidate screening. Traditional computational approaches, including similarity-based and network-

based methods, often fail to capture complex nonlinear relationships between molecular structures and protein 

sequences. Recent deep learning models improve prediction accuracy but still struggle to jointly model global 

molecular topology and fine-grained local chemical substructures that drive binding specificity. In this work, we 

propose a CNNRMHSA-LGTEN: An Efficient Local Graph Transformer and Convolutional Attention Exchange 

Network for Drug Target Interaction Prediction for accurate DTI prediction. The proposed framework explicitly 

constructs khop local concept subgraphs from drug molecular graphs to preserve functional chemical motifs, while 

a relative multi-head self-attention mechanism encodes both structural and attribute-level dependencies. Protein 

sequences are modeled using stacked one-dimensional Convolutional Neural Networks to extract hierarchical 

residue patterns. A gated attention-based fusion module integrates drug and protein representations, followed by 

a fully connected prediction head. Experimental results demonstrate that the proposed model consistently 

outperforms state-of-the-art baselines across multiple evaluation metrics, highlighting the effectiveness of 

combining local subgraph awareness with attention-driven graph representation learning for DTI prediction. 

Keywords: Drug Target Interaction prediction, Local Subgraph, Graph Neural Networks, Multi-head 

SelfAttention, Graph Attention Encoder, Gated Fusion, Deep Learning. 
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1 Introduction 

Drug–target interactions (DTIs) form the foundation of therapeutic efficacy and safety in pharmaceutical research. 

Identifying whether a chemical compound interacts with a biological target is essential for drug discovery, drug 

repurposing, and toxicity assessment. However, wet-lab validation of DTIs is time-consuming, costly, and labor-

intensive, motivating the development of computational prediction methods [1]. 

Early DTI prediction approaches relied heavily on similarity-based methods, which infer interactions based on 

chemical similarity between drugs or sequence similarity between proteins [2]. While intuitive, these methods 

assume that similar entities behave similarly, an assumption that often breaks down for structurally diverse 

compounds. Network-based approaches, including random-walk and heterogeneous network inference 

techniques, model DTIs as bipartite or heterogeneous graphs and exploit global topological relationships to infer 

unknown interactions [1, 2]. Although effective to some extent, these methods depend strongly on predefined 

similarity measures and known interaction networks, limiting their ability to generalize to novel drugs or targets. 

With the advent of deep learning, neural models based on convolutional architectures were introduced to 

automatically learn representations from raw drug SMILES strings and protein sequences. DeepDTA 

demonstrated that convolutional neural networks can effectively model drug–target binding affinity without 

handcrafted features [3]. While such sequence-based models significantly improved predictive performance, they 

ignore the intrinsic graph structure of molecules, thereby limiting their ability to capture atom-level interactions 

critical for binding specificity. 

Graph neural networks (GNNs) address this limitation by naturally representing drugs as molecular graphs, where 

atoms and bonds correspond to nodes and edges. Graph convolutional networks introduced by Kipf and Welling 

[?] were later adopted for DTI prediction, showing that graph-based molecular representations improve prediction 

accuracy compared to sequence-only approaches [4]. Extensions of GNNbased models further incorporated 

heterogeneous biomedical information to model complex drug–protein relationships [15]. Despite these advances, 

most GNN-based DTI models focus on learning global graph representations, which may obscure chemically 

meaningful local structures. 

Local chemical substructures, such as aromatic rings, heterocycles, and functional groups, often determine 

molecular binding behavior. Network motifs, defined as statistically significant recurring subgraph patterns, were 

introduced as fundamental building blocks of complex networks [8]. In molecular graphs, these motifs correspond 

to functional fragments that play a decisive role in biological activity. Fragment-based representations, including 

extended-connectivity fingerprints, explicitly encode local neighborhoods and have proven effective for molecular 

property prediction [9]. Recent graph learning studies further demonstrated that localized neighborhood sampling 

and subgraph-based learning improve representation expressiveness and robustness [10–12]. 

Attention mechanisms further enhance graph representation learning by allowing models to selectively emphasize 

informative components. Graph Attention Networks (GATs) assign adaptive importance weights to neighboring 

nodes, enabling more expressive aggregation than uniform message passing [17]. In the context of drug discovery, 

fragment-oriented and attention-based DTI models have shown that emphasizing local chemical regions improves 

interpretability and prediction performance [29,31]. However, most existing attention-based approaches either 

rely on predefined fragments or apply attention at the global graph level, without explicitly constructing and 

encoding localized concept subgraphs grounded in molecular topology. 

To address these limitations, this work proposes a CNNRMHSA-LGTEN: An Efficient Local Graph Transformer 

and Convolutional Attention Exchange Network for Drug Target Interaction Prediction for DTI prediction. The 

proposed framework explicitly constructs k-hop local subgraphs from drug molecular graphs to preserve 

functional chemical motifs and encodes them using relative multi-head self-attention. By jointly modeling global 

molecular context and fine-grained local substructures, the proposed approach learns more discriminative drug 

representations. The protein branch employs stacked one-dimensional convolutional neural networks to capture 

hierarchical sequence motifs, and an attention-guided fusion module integrates drug and protein embeddings for 

robust interaction prediction. To address these limitations, we propose a CNNRMHSA-LGTEN: An Efficient 

Local Graph Transformer and Convolutional Attention Exchange Network for Drug Target Interaction Prediction 
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for drug–target interaction prediction. The model explicitly constructs k-hop local subgraphs from drug molecular 

graphs and encodes them using relative multi-head self-attention, enabling the preservation of chemically 

meaningful functional motifs while mitigating oversmoothing and over-squashing effects. Protein sequences are 

modeled using stacked one-dimensional convolutional neural networks, which effectively capture hierarchical 

residue motifs associated with binding sites. An attention-guided fusion module integrates drug and protein 

representations, resulting in discriminative and robust interaction prediction. The main contributions of this work 

are summarized as follows: • A local subgraph construction mechanism is introduced to explicitly model 

functional chemical fragments within drug molecular graphs. 

• A relative multi-head self-attention graph encoder is designed to jointly capture structural and semantic 

dependencies in local subgraphs. 

• An attention-refined drug–protein fusion strategy is proposed to enhance interaction-specific 

representation learning. 

• Extensive experiments demonstrate that the proposed approach outperforms existing state-of-the-art DTI 

prediction models. 

2 Related Work 

2.1 Similarity-Based and Network-Based DTI Prediction 

Early computational approaches for drug–target interaction (DTI) prediction primarily relied on similaritybased 

assumptions, where chemically similar drugs or sequence-similar proteins were expected to share interaction 

profiles. Heterogeneous network-based inference methods modeled drugs and targets as nodes connected via 

similarity and interaction edges, enabling interaction inference through network propagation mechanisms [1]. 

Random-walk-based strategies further improved prioritization by exploiting global topological information in 

biological networks [2]. 

Although effective in data-rich scenarios, these approaches depend heavily on predefined similarity measures and 

known interactions, limiting their ability to generalize to novel drugs or targets. Moreover, such shallow models 

lack the representational capacity to capture nonlinear and context-dependent biochemical relationships. 

2.2 Deep Learning Models for DTI Prediction 

With advances in deep learning, sequence-based neural models were introduced to learn representations directly 

from raw drug and protein inputs. DeepDTA employed convolutional neural networks (CNNs) to model drug 

SMILES strings and protein sequences, achieving improved binding affinity prediction without handcrafted 

features [3]. Subsequent attention-based architectures further enhanced prediction performance by modeling 

complex interactions across diverse protein families [21]. 

Despite their success, sequence-only models ignore the intrinsic graph structure of molecules, limiting their ability 

to capture atom-level interactions that are critical for binding specificity. 

2.3 Graph Transformer Networks 

Graph neural networks (GNNs) naturally represent molecular structures as graphs, where atoms and bonds 

correspond to nodes and edges. Early graph convolutional networks, such as the spectral GCN proposed by Kipf 

and Welling, enabled effective neighborhood aggregation over graph structures and were later adapted for DTI 

prediction, demonstrating improved performance by learning directly from molecular graphs rather than from 

hand-crafted descriptors [5,6]. However, many conventional GNNs rely on fixed, localityconstrained aggregation 

schemes and can suffer from over-smoothing or limited ability to capture long-range dependencies in larger 

molecular graphs. 

Graph Transformer Networks extend the Transformer architecture to arbitrary graphs by integrating selfattention 

with explicit graph topology information. Dwivedi and Bresson generalized the standard sequence Transformer 

by making the attention mechanism a function of neighborhood connectivity, incorporating Laplacian 

eigenvector-based positional encodings, and supporting edge features such as bond types [7]. This formulation 
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closes the gap between classical GNNs and Transformers, allowing attention weights to depend jointly on node 

features, structural positions, and edge attributes, which is particularly suitable for chemistry where local 

functional groups and global context both influence activity. In the context of DTI modeling, graph transformers 

provide a flexible framework to encode drug molecules as relational graphs while capturing both local subgraph 

motifs and long-range atom–atom interactions within a unified attention-based exchange mechanism. 

Further extensions incorporated heterogeneous biomedical networks to jointly model drugs, targets, and side 

effects [15]. However, standard GNNs often emphasize global graph representations and suffer from over-

smoothing, which can obscure chemically meaningful local patterns. 

2.4 Local Graph Transformer Networks 

To overcome the limitations of global graph embeddings, research has increasingly focused on local subgraph and 

motif-based representations. Network motifs were formally introduced as statistically significant recurring 

subgraphs that serve as fundamental building blocks of complex networks [8]. In molecular graphs, such motifs 

correspond to functional groups and fragments that largely determine chemical reactivity and biological activity. 

Fragment-based representations such as extended-connectivity fingerprints (ECFP) explicitly encode local 

neighborhoods around atoms and have proven highly effective for molecular property prediction [9]. Inductive 

graph learning methods further demonstrated that localized neighborhood sampling improves scalability and 

expressiveness [10], while subgraph-based GNNs enhanced robustness by learning from k-hop ego networks 

[11]. 

Hierarchical pooling approaches, such as DiffPool, preserve important substructures by learning multilevel graph 

representations [12]. Message-passing neural networks implicitly encode local structures but lack explicit 

interpretability regarding which subgraphs drive predictions [13]. To address this, local-Global Graph 

Transformer with Memory Reconstruction integrates explicit local subgraph modeling with global attention and 

memory-based reconstruction, enabling holistic node anomaly evaluation by jointly capturing structural normality 

and long-range dependencies [14]. 

2.5 Subgraph-Aware and Attention-Based DTI Models 

In the context of DTI prediction, subgraph-aware methods remain relatively limited. Fragment-oriented attention 

mechanisms explicitly highlight functional fragments contributing to binding interactions [31]. More recently, 

multi-head attention mechanisms have been employed to capture complex cross-modal relationships between 

drugs and targets [17,19]. 

Multi-source and multi-attention frameworks further improved prediction performance by integrating 

heterogeneous biological information [18,20]. However, most existing approaches either rely on predefined 

fragments or apply attention at the global graph level, without explicitly constructing and encoding localized 

concept subgraphs grounded in molecular topology. 

Attention mechanisms have emerged as an effective strategy for enhancing representation learning by selectively 

focusing on informative features. The introduction of self-attention and multi-head attention mechanisms enabled 

models to capture long-range dependencies and diverse interaction patterns across different representation 

subspaces [23,27]. Layer normalization further stabilizes deep attention-based architectures and improves training 

convergence [24]. 

In drug–target interaction prediction, fragment-oriented and attention-based models have demonstrated that 

emphasizing local chemical regions improves both interpretability and predictive performance [31]. Recent 

studies have incorporated multi-head self-attention and cross-attention mechanisms to model complex drug–

protein relationships more effectively [28–30]. Multi-source attention frameworks further enhance DTI prediction 

by integrating heterogeneous biological information [32]. 

Despite these advances, most existing attention-based DTI models either operate on global molecular 

representations or rely on predefined fragments, without explicitly constructing and encoding localized concept 
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subgraphs grounded in molecular topology. This limitation motivates the proposed local-subgraph-aware 

attention-driven framework. 

2.6 Motivation for the Proposed Work 

Despite substantial progress, existing DTI models suffer from three major limitations: (i) insufficient explicit 

modeling of local chemical subgraphs, (ii) limited interpretability of learned representations, and (iii) inadequate 

alignment between local drug structures and protein sequence features. 

To address these challenges, the proposed CNNRMHSA-LGTEN framework explicitly constructs k-hop local 

subgraphs from molecular graphs and encodes them using relative multi-head self-attention. This design enables 

the model to emphasize chemically meaningful motifs, capture fine-grained structural dependencies, and improve 

interaction-specific representation learning beyond existing graph-based and attention-driven DTI methods. 

3 Local Graph Transformer and Convolutional Attention Exchange Network 

The proposed architecture, as shown in Figure 1, reflects recent progress in deep learning–based drug–target 

interaction (DTI) prediction, which has highlighted the effectiveness of convolutional neural networks in 

extracting hierarchical patterns from protein sequences [26, 31]. However, CNN-based models alone are limited 

in modeling long-range dependencies and complex cross-modal interactions. 

Self-attention and multi-head attention mechanisms address this limitation by enabling adaptive feature weighting 

and interaction modeling across multiple representation subspaces [23,27]. Attention-based DTI models have 

demonstrated improved predictive performance by selectively emphasizing binding-relevant regions in drugs and 

proteins [28–30]. 

Motivated by these advances, the proposed Local Graph Transformer and Convolutional Attention Exchange 

Network (CNNRMHSA-LGTEN) integrates stacked one-dimensional CNNs for protein sequence modeling with 

relative multi-head self-attention for graph-based drug representations. Unlike existing approaches that rely on 

global graph embeddings or predefined fragments [31,32], the proposed framework explicitly constructs k-hop 

local subgraphs to preserve chemically meaningful functional motifs and encodes them using attention-driven 

graph transformer blocks. 

3.1 Drug Sequence Processing 

3.1.1 Drug Input Embedding 

The drug is provided as a SMILES string and first converted into a molecular graph Gd = (Vd,Ed), where Vd is the 

set of atoms and Ed is the set of chemical bonds. For each atom i ∈ Vd, an initial feature vector xi is constructed, 

encoding atom type, degree, aromaticity, formal charge, hybridization and related descriptors. These feature 

vectors form the node-feature matrix X ∈ R|Vd|×Fv, and the adjacency matrix Ad encodes the bond connectivity of 

the molecule. 

3.1.2 Graph Neural Network (GNN) 

The molecular graph is then processed by a graph neural network (GNN) to obtain a global drug representation. 

At each GNN layer, every node aggregates information from its neighbors, so that after multiple layers the node 

embeddings incorporate wider chemical context beyond immediate neighbors. A graph-level drug embedding 

zd
GNN is obtained by pooling (e.g., mean, sum or attention pooling) over all atom embeddings. This embedding 

captures global structural and chemical properties of the molecule that are relevant for binding. 

3.1.3 Drug Local Subgraph Representation 

In addition to the global representation, the model constructs local concept subgraphs around each atom. For every 

center atom c ∈ Vd, a k-hop neighborhood subgraph Sc = (Vc,Ec) is extracted, where Vc contains all atoms within 

graph distance k from c, and Ec contains all bonds among atoms in Vc. Each subgraph represents a local functional 

fragment, such as an aromatic ring or a heterocycle. A dedicated subgraph encoder (e.g., a Transformer with 

relative attention or a small GNN) is applied to each Sc to obtain a subgraph embedding gc that combines node 
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features and structural information. An attention or pooling mechanism over {gc} then produces a subgraph-aware 

drug representation zd
sub that emphasizes chemically meaningful local patterns. 

 

Figure 1: Block diagram of the proposed Local Graph Transformer and Convolutional Attention Exchange 

Network. 

3.2 Protein Sequence Processing 

3.2.1 Protein Sequence Embedding 

On the protein side, the input is the amino acid sequence p = (a1,...,aL). Each residue at is mapped to a trainable 

embedding vector e(at), yielding an embedding matrix Ep ∈ RL×Fp. This representation captures residue identity 

and can be combined with positional information so that the encoder is aware of sequence order. The embedded 

sequence serves as the input to subsequent convolutional layers. 
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3.2.2 Stacked 1D CNNs and Protein Representation 

The protein embeddings are processed by two stacked one-dimensional convolutional neural networks. The first 

1D CNN uses filters of width k1 and C1 channels to scan along the sequence and detect local sequence motifs over 

windows of length k1. A nonlinear activation function is applied to the resulting feature maps. The second 1D 

CNN, with kernel width k2 and C2 channels, operates on the output of the first convolution to capture higher-order 

and longer-range patterns by combining information from multiple local motifs. Finally, a global pooling 

operation over the sequence dimension (e.g., max or average pooling) aggregates the position-wise features into 

a fixed-length protein representation vector zp. 

3.3 Interaction between Drug and Protein Sequence 

3.3.1 Attention Blocks for Drug and Protein 

Each branch passes its representation through an attention or gating block to refine the features before fusion. For 

the drug branch, a gating vector is computed from the drug representation (for example using a small fully 

connected layer followed by a sigmoid activation), and this gate is applied element-wise to zd to attenuate less 

informative dimensions and amplify important ones. An analogous gating mechanism is applied to the protein 

representation zp, producing refined vectors and . This step allows the model to focus on the most predictive 

latent features in each modality. 

3.3.2 Feature Fusion 

The refined drug and protein representations are then combined in the feature fusion block. A bilinear or similar 

interaction function (for example ) can be used to compute an interaction score or attention weight 

between the two embeddings. Based on this score, scalar weights for the drug and protein branches can be derived, 

and a fused vector zf is formed by concatenating or mixing  and , where αd and αp quantify the relative 

contribution of each branch. The fused representation zf encodes joint drug–protein information tailored to the 

interaction task. 

3.3.3 Fully Connected Layer with ReLU 

The fused vector is passed through a fully connected (dense) layer with ReLU activation. This layer performs a 

nonlinear transformation of zf to learn higher-level interaction features that combine the drug and protein 

information in a task-specific way. It reduces or reshapes the fused feature space into a representation that is more 

separable with respect to interacting versus non-interacting pairs, or different affinity values. 

3.4 DTI Prediction 

The final prediction layer outputs the interaction score using a fully connected network followed by a sigmoid 

activation for classification or a linear activation for regression. 

For clarity, the overall algorithmic workflow of the proposed framework is summarized in Table 1. 

Table 1: Local Graph Transformer and Convolutional Attention Exchange Algorithm 

Module Pseudocode 

Input Drug SMILES d, Protein sequence p; Hyperparameters: k (subgraph radius), Hatt 

(attention heads), Lenc (encoder layers), k1,k2,C1,C2; Predicted interaction score ˆy 
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Drug Branch: Local 

Subgraphs 

Gd ← SMILES to graph(d) 

For each atom i ∈ Vd: xi ← atom features(i) For each center atom c ∈ Vd: 

Vc ← {i | distGd(c,i) ≤ k} 

Ec ← {(i,j) ∈ Ed | i,j ∈ Vc} 

Local Subgraph Encoding For each subgraph Sc: 

X(c) ← node features, A(c) ← adjacency 

L(c) ← normalized Laplacian 

U(c) ← first r ≪ |Vc| eigenvectors 

X˜(c) ← Concat(X(c),U(c)) 

H(c) ← X˜(c) 

For l = 1 to Lenc: 

For m = 1 to Hatt: 

Qm,Km,Vm ← H(c)Wm 

Am ← softmax(·) 

Zm ← AmVm 

H(c) ← LayerNorm H(c) + Concat( gc ← Pool(H(c)) 

Protein Branch Ep ← Embed(p) 

H(1) ← Conv1D(Ep,k1,C1) H(2) ← Conv1D(H(1),k2,C2) zp ← GlobalPool(H(2)) 

Fusion & Prediction zd′ ← σ(Wdzd) ⊙ zd zp′ ← σ(Wpzp) ⊙ zp zf ← Concat( yˆ ← 

ϕ(W2ReLU(W1zf)) 

3.5 Drug Input Embedding 

Each drug is provided as a SMILES string and converted into a molecular graph 

 Gd = (Vd,Ed), (1) 

where Vd is the set of atoms and Ed ⊆ Vd × Vd is the set of chemical bonds. Every atom i ∈ Vd is mapped to a feature 

vector xi ∈ RFv, forming 

x1 

 H. (2) 

x|Vd| 

From Gd the adjacency matrix Ad ∈ {0,1}|Vd|×|Vd| is 

d, A(3) 

, 
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and the diagonal degree matrix is 

 Dd = diag( . (4) 

Ec, 

A(7) , 

and the node-feature matrix is 

 X . (8) 

To encode structure, we build the normalized Laplacian 

 L , (9) 

where D(c) is the degree matrix of Sc. Let the first r eigenvectors of L(c) be arranged in U(c) ∈ Rnc×r. The final 

subgraph input features combine attributes and structure: 

 X˜ . (10) 

3.7 Local Subgraph Encoder with Relative Multi-Head Attention 

For attention head h = 1,...,H, the query, key, and value matrices are 

 Q , K , (11) 

with W . 

A relative bias  based on graph distance or structural encoding is added to the scaled dot-product logits: 

 . (12) 

The head output is 

 Z . (13) 

Multi-head outputs are concatenated and projected: 

 Zc = Concat Z , (14) 

followed by residual Add&Norm and MLP: 

 H  = LayerNorm X˜ , (15) 

3.6 Drug-Induced Local Subgraph Representation 

3.6.1 Local Subgraph Construction from a Drug 

For each center atom c ∈ Vd, a k-hop neighborhood is defined as 

 

 Sc = (Vc,Ec), Vc = {i ∈ Vd | distGd(c,i) ≤ k}, Ec = {(i,j) ∈ Ed | i,j ∈ Vc}. 

This yields the family of local subgraphs 

(5) 

Sd = {Sc | c ∈ Vd}, 

each capturing a functional fragment likely to determine binding. 

3.6.2 Adjacency Matrix and Node Features 

(6) 

For a local subgraph Sc with |Vc| = nc, index its nodes as v1,...,vnc. The local adjacency matrix A(c) ∈ 

{0,1}nc×nc is 
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 Hc
enc = LayerNorm H  + MLP( . (16) 

3.8 Subgraph and Drug-Level Representations 

A subgraph embedding is obtained via pooling: 

 gc = Pool Hc
enc , (17) 

where Pool may be mean, max, or attention pooling. All subgraphs are aggregated with attention: 

 , (18) 

 zd = Xβcgc. (19) 

c 

3.9 Protein Sequence Embedding and Stacked 1D CNNs 

The protein sequence p = (a1,...,aL) is tokenized into amino acids; each at has embedding e(at) ∈ RFp, giving e(a1) 

 E. (20) 

e(aL) 

With width k1 and C1 channels, the first 1D CNN is 

  , (21) 

producing H(1) ∈ RL1×C1. A second 1D CNN with width k2 and C2 channels gives 

  , (22) 

with H(2) ∈ RL2×C2 and 

 zp = Pool H . (23) 

This section presents a comprehensive experimental evaluation of the proposed drug–target interaction (DTI) 

prediction framework. The objective of the experimental study is to assess the effectiveness of the proposed model 

in comparison with existing methods. To ensure a fair and reliable evaluation, experiments were conducted using 

two publicly available benchmark datasets, demonstrating the superior predictive capability of the proposed 

approach. 

4 EXPERIMENT ANALYSIS 

This section presents the experimental evaluation and discusses the corresponding results. Experiments conducted 

on two publicly available datasets demonstrate that the proposed model outperforms conventional approaches. 

4.1 Dataset Description 

4.1.1 Human Dataset 

The Human dataset consists of a total of 33,984 drug–protein interaction pairs, including 3,369 confirmed positive 

interactions. These interactions involve 1,052 unique drug compounds and 852 distinct protein targets. For model 
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training and evaluation, the dataset is divided into 27,187 samples for training and 6,797 samples for testing. This 

dataset provides a challenging and realistic benchmark for evaluating large-scale DTI prediction performance. 

4.1.2 C. elegans Dataset 

The C. elegans dataset contains 4,800 interaction samples, including 4,000 positive drug–target interactions. It 

involves 1,434 distinct chemical compounds and 2,504 unique protein targets. The dataset is split into 3,840 

samples for training and 960 samples for testing. Due to its diverse interaction patterns, this dataset is widely used 

to validate the generalization ability of DTI prediction models. 

4.2 Evaluation Protocol and Performance Metrics 

To quantitatively evaluate the performance of the proposed DTI prediction model, a confusion matrix– based 

evaluation protocol is adopted. The confusion matrix provides a detailed assessment of the model’s classification 

behavior by categorizing predictions into four outcomes: True Positives (TP), False Positives (FP), True Negatives 

(TN), and False Negatives (FN). 

True Positives represent correctly identified interacting drug–target pairs, while True Negatives correspond to 

correctly predicted non-interacting pairs. False Positives occur when the model incorrectly predicts an interaction 

for a non-interacting pair, whereas False Negatives indicate missed interactions where true interacting pairs are 

incorrectly classified as non-interacting. These four components form the basis for computing standard 

performance metrics such as accuracy, precision, recall, and the area under the ROC curve (AUC). 

4.3 Evaluation Metrics 

The performance of the proposed drug–target interaction (DTI) prediction model is evaluated using standard 

classification metrics derived from the confusion matrix, including Accuracy, Precision, Recall, F1-score, Area 

Under the ROC Curve (AUC), and Area Under the Precision–Recall Curve (AUPR). 

Accuracy measures the overall correctness of predictions and is defined as 

 Accuracy = , (24) 

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives, respectively. 

Precision evaluates the reliability of positive predictions, while Recall measures the ability to identify true 

interactions: 

 Precision = , Recall = . (25) 

The F1-score provides a balanced measure of Precision and Recall and is computed as  

2 × Precision × Recall 

 F1-score = . 

Precision + Recall (26) 

The Area Under the Receiver Operating Characteristic Curve (AUC) evaluates the model’s ability to discriminate 

between interacting and non-interacting drug–target pairs across different thresholds, with higher values 

indicating better separability. 

The Area Under the Precision–Recall Curve (AUPR) summarizes the trade-off between Precision and Recall over 

all thresholds and is particularly informative for imbalanced datasets. Higher AUPR values indicate more effective 

prioritization of true drug–target interactions. 

4.4 Performance Analysis of the CNNRMHSA-LGTEN 

Table 2 presents a comprehensive performance comparison on the Human dataset. The CNNRMHSALGTEN 

consistently outperforms existing baseline and state-of-the-art DTI prediction models across all evaluation 
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metrics. In terms of overall classification performance, the proposed approach achieves the highest accuracy of 

0.9726, demonstrating its superior predictive capability. 

The proposed model also attains the best AUC value of 0.9898, indicating a strong ability to discriminate between 

interacting and non-interacting drug–target pairs. This improvement over attention-based models confirms the 

benefit of incorporating local subgraph-aware representations with relative multi-head selfattention. 

Moreover, the CNNRMHSA-LGTEN records the highest precision (0.9719) and recall (0.9734), reflecting a 

balanced trade-off between false positive reduction and true interaction identification. The superior AUPR score 

of 0.9695 further highlights the robustness of the model in prioritizing true interactions in imbalanced datasets. 

Finally, the highest F1-score of 0.9726 demonstrates the overall stability and effectiveness of the proposed 

framework for DTI prediction. 

Table 2: Performance Comparison on the Human Dataset 

Dataset Method Acc. AUC Prec. Recall AUPR F1 

Human RWR [33] – 0.8375 0.7707 0.7243 0.8165 0.7466 

 DrugE-Rank [34] – 0.8562 0.7181 0.8668 0.8257 0.7851 

 DeepConv-DTI [35] – 0.9738 0.9295 0.9175 0.9437 0.9204 

 DeepCPI [36] – 0.9692 0.9187 0.9210 0.9399 0.9096 

 MHSADTI [28] 0.9452 0.9822 0.9472 0.9365 0.9568 0.9346 

 RMHSA GAEN [37] 0.9517 0.9873 0.9508 0.9524 0.9637 0.9516 

 RMHSA GTEN [38] 0.9630 0.9895 0.9622 0.9636 0.9629 0.9624 

 CNNRMHSA-LGTEN 0.9726 0.9898 0.9719 0.9734 0.9695 0.9726 

The outcomes demonstrate that the CNNRMHSA-LGTEN outperforms the other algorithms, indicating that it is 

active in detecting images. In terms of Accuracy,AUC,Precision,Recall and AUPR,F1 Score, our technique 

performs at 0.9726, 0.9898,0.9719,0.9734,0.9695,0.9726. 
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Figure 2: AUC comparison of different methods on the Human dataset. 

 

Figure 3: Precision comparison on the Human dataset. 
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Figure 4: Recall comparison on the Human dataset. 

 

Figure 5: AUPR comparison of different methods on the Human dataset. 

 

Figure 6: F1-scorecomparison of different methods on the Human dataset. 
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In terms of AUC comparison on the Human dataset the CNNRMHSA-LGTEN achieves the highest AUC 

performance, improves AUC by approximately 0.03% compared to the approach in [38] and by 0.25% over the 

method in [37]. Furthermore, it achieves a gain of about 0.77% in [28], shows an improvement of nearly 1.64% 

over the model in [35] and 2.13% over the method in [36], approximately 15.6% over [34] and 18.2% over [33]. 

These results confirm that the proposed framework offers superior class separability and more reliable 

discrimination between interacting and non-interacting drug–target pairs. 

The F1-score comparison demonstrates that the proposed framework achieves 1.03% in [38] and by about 2.21% 

in [37], in [28], [36], and [35] by approximately 3.84%, 4.51%, and 5.33%, respectively and about 23.83% over 

[34] and 30.20% in [33]. These gains highlight the effectiveness of the proposed model in delivering balanced 

and reliable DTI prediction performance. 

The AUPR comparison emphasizes the robustness of the proposed framework in ranking true drug–target 

interactions under imbalanced conditions. The CNNRMHSA-LGTEN improves AUPR by approximately 0.33% 

over the attention-based model in [38] and by about 0.60% over the approach in [37]. When compared with deep 

learning baselines, it achieves gains of nearly 1.08% over [28], 2.60% over [36], and 2.75% over [35]. More 

substantial improvements are observed against traditional methods, with increases of approximately 17.45% over 

[34] and 18.75% over [33]. These results confirm the superior ranking capability and stability of the proposed 

framework. 

The precision comparison on the Human dataset demonstrates that the proposed framework consistently 

outperforms existing approaches and achieves the highest precision, improving by approximately 0.36% over the 

attention-based model in [28] and by about 0.97% compared to the graph-transformer-based approach in [38] and 

found that 0.77% over the graph-attention exchange network model proposed in [37]. Furthermore, the proposed 

framework achieves gains of nearly 2.13% and 3.21% over the deep learning models reported in [35] and [36], 

respectively. More substantial improvements are observed when compared with traditional network-based 

methods, with precision gains of approximately 23.27% over [34] and 18.01% over [33]. 

In terms of Recall, Figure ?? shows that the proposed framework achieves the effectiveness in identifying true 

drug–target interactions. The CNNRMHSA-LGTEN achieves consistent recall improvements, outperforming the 

attention-based approach in [28] by approximately 1.59%. It also demonstrates gains of about 0.99% over the 

graph-attention exchange network model reported in [37] and approximately 1.07% over the graph-transformer-

based approach in [38]. Furthermore, the proposed framework surpasses the deep learning models in [36] and [35] 

by about 3.14% and 3.49%, respectively. In comparison with traditional network-based methods, notable recall 

improvements of approximately 8.56% over [34] and 22.81% over [33] are observed. These results confirm that 

the proposed framework effectively reduces false positive predictions while maintaining high reliability in drug–

target interaction identification. 

Table 3: Performance Comparison on the C. elegans Dataset 

Dataset Method Acc. AUC Prec. Recall AUPR F1 

C. elegans RWR [33] – 0.8493 0.7860 0.7128 0.8212 0.7475 

 DrugE-Rank [34] – 0.8221 0.7906 0.7474 0.8322 0.7684 

 DeepConv-DTI [35] – 0.9782 0.9435 0.9423 0.9711 0.9579 

 DeepCPI [36] – 0.9758 0.9393 0.9271 0.9571 0.9394 

 MHSADTI [28] 0.9454 0.9838 0.9465 0.9451 0.9832 0.9763 

 RMHSA GAEN [37] 0.9654 0.9867 0.9652 0.9657 0.9887 0.9655 

 RMHSA GTEN [38] 0.9720 0.9889 0.9719 0.9723 0.9893 0.9721 
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 CNNRMHSA-LGTEN 0.9827 0.9896 0.9825 0.9829 0.9899 0.9827 

In terms of Precision, the proposed framework achieves the highest performance on the C. elegans dataset, 

improving by approximately 1.10% over the graph-attention exchange network in [37] and 0.91% over the graph-

transformer-based approach in [38]. It further demonstrates gains of 3.61% and 5.53% over deep learning models 

in [28] and [36], respectively, while achieving substantial improvements of over 23% compared to traditional 

methods in [33]. 

In terms of Recall, the CNNRMHSA-LGTEN consistently outperforms all baselines, achieving improvements of 

approximately 1.06% over [37] and 1.07% over [38]. More notable gains of 3.79% and 4.05% are observed over 

deep learning approaches in [28] and [36], respectively. Compared with traditional networkbased methods, recall 

improvements exceeding 27% are achieved over [33] 

In terms of AUC, the proposed framework demonstrates superior discriminative capability, achieving 

improvements of approximately 0.07% over [38] and 0.30% over [37]. It further outperforms deep learning 

baselines in [28], [36], and [35] by margins exceeding 0.58%, while achieving significant gains of over 20% 

compared to traditional methods in [33]. 

In terms of AUPR, the CNNRMHSA-LGTEN achieves the highest ranking performance, improving by 

approximately 0.06% over [38] and 0.12% over [37]. It also demonstrates consistent gains of more than 1.20% 

over attention-based and deep learning models in [28] and [36], while outperforming traditional approaches in 

[33] by over 20%. 

 

Figure 7: AUC comparison on the C. elegans dataset. 
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Figure 8: Precision comparison on the C. elegans dataset. 

 

Figure 9: Recall comparison on the C. elegans dataset. 

 

Figure 10: AUPR comparison on the C. elegans dataset. 
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Figure 11: F1-score comparison on the C. elegans dataset. 

In terms of F1-score, the proposed framework achieves a superior balance between precision and recall, 

outperforming graph-based and attention-based approaches in [38] and [37] by approximately 1.08% and 1.78%, 

respectively. It further surpasses deep learning baselines in [28] and [36] by over 2.50%, and achieves substantial 

improvements exceeding 31% over traditional methods in [33]. 

5 Conclusion 

In this work, we presented a CNNRMHSA-LGTEN: An Efficient Local Graph Transformer and Convolutional 

Attention Exchange Network for Drug Target Interaction Prediction for accurate and robust drug–target 

interaction (DTI) prediction. Motivated by the observation that molecular binding behavior is largely governed 

by fine-grained chemical substructures rather than solely by global molecular topology, the proposed framework 

explicitly integrates local subgraph modeling into an attention-driven graph representation learning 

paradigm.Unlike conventional graph neural network–based DTI models that primarily focus on global 

aggregation, the proposed approach constructs k-hop local concept subgraphs centered around individual atoms 

to preserve chemically meaningful functional fragments. By encoding these subgraphs using a relative multihead 

self-attention mechanism, the model effectively captures both attribute-level semantics and structural 

dependencies within local molecular neighborhoods. This design allows the learned drug representations to remain 

sensitive to functional motifs such as aromatic rings and heterocycles that are critical for binding specificity.On 

the protein side, stacked one-dimensional convolutional neural networks were employed to extract hierarchical 

residue-level patterns from amino acid sequences, enabling the model to capture both local and higher-order 

sequence motifs. An attention-based gating and fusion strategy was further introduced to adaptively integrate drug 

and protein representations, ensuring that interaction-relevant features from each modality are emphasized during 

prediction. 

Extensive experimental evaluations demonstrate that the proposed CNNRMHSA-LGTEN network consistently 

outperforms existing state-of-the-art DTI prediction models across multiple evaluation metrics. These results 

confirm that explicitly modeling local chemical substructures, combined with attention-driven representation 

learning, leads to more discriminative and robust drug–target interaction predictions. Beyond performance gains, 

the subgraph-aware design also enhances model interpretability by highlighting which local molecular regions 

contribute most strongly to predicted interactions. 

Despite its effectiveness, several avenues for future work remain. First, integrating protein structural information, 

such as contact maps or three-dimensional conformations, could further improve interaction modeling. Second, 

adaptive or learned subgraph radius selection may better capture variable-sized functional motifs across diverse 

compounds. Finally, extending the proposed framework to multitask settings, such as joint prediction of binding 

affinity, selectivity, and toxicity, represents a promising direction for advancing data-driven drug discovery. 
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Overall, this study demonstrates that local subgraph awareness, when combined with relational multihead self-

attention, provides a powerful and flexible foundation for next-generation DTI prediction models and offers 

valuable insights for the development of more interpretable and biologically grounded computational drug 

discovery methods. 
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