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Abstract

Drug Target Interaction (DTI) prediction plays a crucial role in drug discovery by reducing experimental cost and
accelerating candidate screening. Traditional computational approaches, including similarity-based and network-
based methods, often fail to capture complex nonlinear relationships between molecular structures and protein
sequences. Recent deep learning models improve prediction accuracy but still struggle to jointly model global
molecular topology and fine-grained local chemical substructures that drive binding specificity. In this work, we
propose a CNNRMHSA-LGTEN: An Efficient Local Graph Transformer and Convolutional Attention Exchange
Network for Drug Target Interaction Prediction for accurate DTI prediction. The proposed framework explicitly
constructs khop local concept subgraphs from drug molecular graphs to preserve functional chemical motifs, while
a relative multi-head self-attention mechanism encodes both structural and attribute-level dependencies. Protein
sequences are modeled using stacked one-dimensional Convolutional Neural Networks to extract hierarchical
residue patterns. A gated attention-based fusion module integrates drug and protein representations, followed by
a fully connected prediction head. Experimental results demonstrate that the proposed model consistently
outperforms state-of-the-art baselines across multiple evaluation metrics, highlighting the effectiveness of
combining local subgraph awareness with attention-driven graph representation learning for DTI prediction.

Keywords: Drug Target Interaction prediction, Local Subgraph, Graph Neural Networks, Multi-head
SelfAttention, Graph Attention Encoder, Gated Fusion, Deep Learning.
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1 Introduction

Drug—target interactions (DTIs) form the foundation of therapeutic efficacy and safety in pharmaceutical research.
Identifying whether a chemical compound interacts with a biological target is essential for drug discovery, drug
repurposing, and toxicity assessment. However, wet-lab validation of DTIs is time-consuming, costly, and labor-
intensive, motivating the development of computational prediction methods [1].

Early DTI prediction approaches relied heavily on similarity-based methods, which infer interactions based on
chemical similarity between drugs or sequence similarity between proteins [2]. While intuitive, these methods
assume that similar entities behave similarly, an assumption that often breaks down for structurally diverse
compounds. Network-based approaches, including random-walk and heterogeneous network inference
techniques, model DTIs as bipartite or heterogeneous graphs and exploit global topological relationships to infer
unknown interactions [1, 2]. Although effective to some extent, these methods depend strongly on predefined
similarity measures and known interaction networks, limiting their ability to generalize to novel drugs or targets.

With the advent of deep learning, neural models based on convolutional architectures were introduced to
automatically learn representations from raw drug SMILES strings and protein sequences. DeepDTA
demonstrated that convolutional neural networks can effectively model drug—target binding affinity without
handcrafted features [3]. While such sequence-based models significantly improved predictive performance, they
ignore the intrinsic graph structure of molecules, thereby limiting their ability to capture atom-level interactions
critical for binding specificity.

Graph neural networks (GNN5s) address this limitation by naturally representing drugs as molecular graphs, where
atoms and bonds correspond to nodes and edges. Graph convolutional networks introduced by Kipf and Welling
[?] were later adopted for DTI prediction, showing that graph-based molecular representations improve prediction
accuracy compared to sequence-only approaches [4]. Extensions of GNNbased models further incorporated
heterogeneous biomedical information to model complex drug—protein relationships [15]. Despite these advances,
most GNN-based DTI models focus on learning global graph representations, which may obscure chemically
meaningful local structures.

Local chemical substructures, such as aromatic rings, heterocycles, and functional groups, often determine
molecular binding behavior. Network motifs, defined as statistically significant recurring subgraph patterns, were
introduced as fundamental building blocks of complex networks [8]. In molecular graphs, these motifs correspond
to functional fragments that play a decisive role in biological activity. Fragment-based representations, including
extended-connectivity fingerprints, explicitly encode local neighborhoods and have proven effective for molecular
property prediction [9]. Recent graph learning studies further demonstrated that localized neighborhood sampling
and subgraph-based learning improve representation expressiveness and robustness [10—12].

Attention mechanisms further enhance graph representation learning by allowing models to selectively emphasize
informative components. Graph Attention Networks (GATs) assign adaptive importance weights to neighboring
nodes, enabling more expressive aggregation than uniform message passing [17]. In the context of drug discovery,
fragment-oriented and attention-based DTI models have shown that emphasizing local chemical regions improves
interpretability and prediction performance [29,31]. However, most existing attention-based approaches either
rely on predefined fragments or apply attention at the global graph level, without explicitly constructing and
encoding localized concept subgraphs grounded in molecular topology.

To address these limitations, this work proposes a CNNRMHSA-LGTEN: An Efficient Local Graph Transformer
and Convolutional Attention Exchange Network for Drug Target Interaction Prediction for DTI prediction. The
proposed framework explicitly constructs k-hop local subgraphs from drug molecular graphs to preserve
functional chemical motifs and encodes them using relative multi-head self-attention. By jointly modeling global
molecular context and fine-grained local substructures, the proposed approach learns more discriminative drug
representations. The protein branch employs stacked one-dimensional convolutional neural networks to capture
hierarchical sequence motifs, and an attention-guided fusion module integrates drug and protein embeddings for
robust interaction prediction. To address these limitations, we propose a CNNRMHSA-LGTEN: An Efficient
Local Graph Transformer and Convolutional Attention Exchange Network for Drug Target Interaction Prediction
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for drug—target interaction prediction. The model explicitly constructs k-hop local subgraphs from drug molecular
graphs and encodes them using relative multi-head self-attention, enabling the preservation of chemically
meaningful functional motifs while mitigating oversmoothing and over-squashing effects. Protein sequences are
modeled using stacked one-dimensional convolutional neural networks, which effectively capture hierarchical
residue motifs associated with binding sites. An attention-guided fusion module integrates drug and protein
representations, resulting in discriminative and robust interaction prediction. The main contributions of this work
are summarized as follows: ¢ A local subgraph construction mechanism is introduced to explicitly model
functional chemical fragments within drug molecular graphs.

J A relative multi-head self-attention graph encoder is designed to jointly capture structural and semantic
dependencies in local subgraphs.

J An attention-refined drug—protein fusion strategy is proposed to enhance interaction-specific
representation learning.

. Extensive experiments demonstrate that the proposed approach outperforms existing state-of-the-art DTI
prediction models.

2 Related Work
2.1 Similarity-Based and Network-Based DTI Prediction

Early computational approaches for drug—target interaction (DTI) prediction primarily relied on similaritybased
assumptions, where chemically similar drugs or sequence-similar proteins were expected to share interaction
profiles. Heterogeneous network-based inference methods modeled drugs and targets as nodes connected via
similarity and interaction edges, enabling interaction inference through network propagation mechanisms [1].
Random-walk-based strategies further improved prioritization by exploiting global topological information in
biological networks [2].

Although effective in data-rich scenarios, these approaches depend heavily on predefined similarity measures and
known interactions, limiting their ability to generalize to novel drugs or targets. Moreover, such shallow models
lack the representational capacity to capture nonlinear and context-dependent biochemical relationships.

2.2 Deep Learning Models for DTI Prediction

With advances in deep learning, sequence-based neural models were introduced to learn representations directly
from raw drug and protein inputs. DeepDTA employed convolutional neural networks (CNNs) to model drug
SMILES strings and protein sequences, achieving improved binding affinity prediction without handcrafted
features [3]. Subsequent attention-based architectures further enhanced prediction performance by modeling
complex interactions across diverse protein families [21].

Despite their success, sequence-only models ignore the intrinsic graph structure of molecules, limiting their ability
to capture atom-level interactions that are critical for binding specificity.

23 Graph Transformer Networks

Graph neural networks (GNNs) naturally represent molecular structures as graphs, where atoms and bonds
correspond to nodes and edges. Early graph convolutional networks, such as the spectral GCN proposed by Kipf
and Welling, enabled effective neighborhood aggregation over graph structures and were later adapted for DTI
prediction, demonstrating improved performance by learning directly from molecular graphs rather than from
hand-crafted descriptors [5,6]. However, many conventional GNNs rely on fixed, localityconstrained aggregation
schemes and can suffer from over-smoothing or limited ability to capture long-range dependencies in larger
molecular graphs.

Graph Transformer Networks extend the Transformer architecture to arbitrary graphs by integrating selfattention
with explicit graph topology information. Dwivedi and Bresson generalized the standard sequence Transformer
by making the attention mechanism a function of neighborhood connectivity, incorporating Laplacian
eigenvector-based positional encodings, and supporting edge features such as bond types [7]. This formulation
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closes the gap between classical GNNs and Transformers, allowing attention weights to depend jointly on node
features, structural positions, and edge attributes, which is particularly suitable for chemistry where local
functional groups and global context both influence activity. In the context of DTI modeling, graph transformers
provide a flexible framework to encode drug molecules as relational graphs while capturing both local subgraph
motifs and long-range atom—atom interactions within a unified attention-based exchange mechanism.

Further extensions incorporated heterogeneous biomedical networks to jointly model drugs, targets, and side
effects [15]. However, standard GNNs often emphasize global graph representations and suffer from over-
smoothing, which can obscure chemically meaningful local patterns.

2.4 Local Graph Transformer Networks

To overcome the limitations of global graph embeddings, research has increasingly focused on local subgraph and
motif-based representations. Network motifs were formally introduced as statistically significant recurring
subgraphs that serve as fundamental building blocks of complex networks [8]. In molecular graphs, such motifs
correspond to functional groups and fragments that largely determine chemical reactivity and biological activity.

Fragment-based representations such as extended-connectivity fingerprints (ECFP) explicitly encode local
neighborhoods around atoms and have proven highly effective for molecular property prediction [9]. Inductive
graph learning methods further demonstrated that localized neighborhood sampling improves scalability and
expressiveness [ 10], while subgraph-based GNNs enhanced robustness by learning from k-hop ego networks

[11].

Hierarchical pooling approaches, such as DiffPool, preserve important substructures by learning multilevel graph
representations [12]. Message-passing neural networks implicitly encode local structures but lack explicit
interpretability regarding which subgraphs drive predictions [13]. To address this, local-Global Graph
Transformer with Memory Reconstruction integrates explicit local subgraph modeling with global attention and
memory-based reconstruction, enabling holistic node anomaly evaluation by jointly capturing structural normality
and long-range dependencies [14].

2.5 Subgraph-Aware and Attention-Based DTI Models

In the context of DTI prediction, subgraph-aware methods remain relatively limited. Fragment-oriented attention
mechanisms explicitly highlight functional fragments contributing to binding interactions [31]. More recently,
multi-head attention mechanisms have been employed to capture complex cross-modal relationships between
drugs and targets [17,19].

Multi-source and multi-attention frameworks further improved prediction performance by integrating
heterogeneous biological information [18,20]. However, most existing approaches either rely on predefined
fragments or apply attention at the global graph level, without explicitly constructing and encoding localized
concept subgraphs grounded in molecular topology.

Attention mechanisms have emerged as an effective strategy for enhancing representation learning by selectively
focusing on informative features. The introduction of self-attention and multi-head attention mechanisms enabled
models to capture long-range dependencies and diverse interaction patterns across different representation
subspaces [23,27]. Layer normalization further stabilizes deep attention-based architectures and improves training
convergence [24].

In drug—target interaction prediction, fragment-oriented and attention-based models have demonstrated that
emphasizing local chemical regions improves both interpretability and predictive performance [31]. Recent
studies have incorporated multi-head self-attention and cross-attention mechanisms to model complex drug—
protein relationships more effectively [28—30]. Multi-source attention frameworks further enhance DTI prediction
by integrating heterogeneous biological information [32].

Despite these advances, most existing attention-based DTI models either operate on global molecular
representations or rely on predefined fragments, without explicitly constructing and encoding localized concept
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subgraphs grounded in molecular topology. This limitation motivates the proposed local-subgraph-aware
attention-driven framework.

2.6 Motivation for the Proposed Work

Despite substantial progress, existing DTI models suffer from three major limitations: (i) insufficient explicit
modeling of local chemical subgraphs, (ii) limited interpretability of learned representations, and (iii) inadequate
alignment between local drug structures and protein sequence features.

To address these challenges, the proposed CNNRMHSA-LGTEN framework explicitly constructs k-hop local
subgraphs from molecular graphs and encodes them using relative multi-head self-attention. This design enables
the model to emphasize chemically meaningful motifs, capture fine-grained structural dependencies, and improve
interaction-specific representation learning beyond existing graph-based and attention-driven DTI methods.

3 Local Graph Transformer and Convolutional Attention Exchange Network

The proposed architecture, as shown in Figure 1, reflects recent progress in deep learning—based drug—target
interaction (DTI) prediction, which has highlighted the effectiveness of convolutional neural networks in
extracting hierarchical patterns from protein sequences [26, 31]. However, CNN-based models alone are limited
in modeling long-range dependencies and complex cross-modal interactions.

Self-attention and multi-head attention mechanisms address this limitation by enabling adaptive feature weighting
and interaction modeling across multiple representation subspaces [23,27]. Attention-based DTI models have
demonstrated improved predictive performance by selectively emphasizing binding-relevant regions in drugs and
proteins [28-30].

Motivated by these advances, the proposed Local Graph Transformer and Convolutional Attention Exchange
Network (CNNRMHSA-LGTEN) integrates stacked one-dimensional CNNs for protein sequence modeling with
relative multi-head self-attention for graph-based drug representations. Unlike existing approaches that rely on
global graph embeddings or predefined fragments [31,32], the proposed framework explicitly constructs k-hop
local subgraphs to preserve chemically meaningful functional motifs and encodes them using attention-driven
graph transformer blocks.

3.1 Drug Sequence Processing
3.1.1 Drug Input Embedding

The drug is provided as a SMILES string and first converted into a molecular graph Go= (V4 E4), where Vyis the
set of atoms and E,is the set of chemical bonds. For each atom i € V,, an initial feature vector x;is constructed,
encoding atom type, degree, aromaticity, formal charge, hybridization and related descriptors. These feature
vectors form the node-feature matrix X € R"#* and the adjacency matrix 4,encodes the bond connectivity of
the molecule.

3.1.2 Graph Neural Network (GNN)

The molecular graph is then processed by a graph neural network (GNN) to obtain a global drug representation.
At each GNN layer, every node aggregates information from its neighbors, so that after multiple layers the node
embeddings incorporate wider chemical context beyond immediate neighbors. A graph-level drug embedding
24" is obtained by pooling (e.g., mean, sum or attention pooling) over all atom embeddings. This embedding
captures global structural and chemical properties of the molecule that are relevant for binding.

3.13 Drug Local Subgraph Representation

In addition to the global representation, the model constructs local concept subgraphs around each atom. For every
center atom ¢ € Vy, a k-hop neighborhood subgraph S.= (V. E.) is extracted, where V. contains all atoms within
graph distance & from ¢, and E. contains all bonds among atoms in V.. Each subgraph represents a local functional
fragment, such as an aromatic ring or a heterocycle. A dedicated subgraph encoder (e.g., a Transformer with
relative attention or a small GNN) is applied to each S, to obtain a subgraph embedding g. that combines node
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features and structural information. An attention or pooling mechanism over {g.} then produces a subgraph-aware
drug representation z,/*° that emphasizes chemically meaningful local patterns.
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Figure 1: Block diagram of the proposed Local Graph Transformer and Convolutional Attention Exchange
Network.

3.2 Protein Sequence Processing
3.2.1 Protein Sequence Embedding

On the protein side, the input is the amino acid sequence p = (ajy,...,az). Each residue a,is mapped to a trainable
embedding vector e(a;), yielding an embedding matrix E, € R-?, This representation captures residue identity
and can be combined with positional information so that the encoder is aware of sequence order. The embedded
sequence serves as the input to subsequent convolutional layers.
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3.2.2 Stacked 1D CNNs and Protein Representation

The protein embeddings are processed by two stacked one-dimensional convolutional neural networks. The first
1D CNN uses filters of width &1 and C; channels to scan along the sequence and detect local sequence motifs over
windows of length ki. A nonlinear activation function is applied to the resulting feature maps. The second 1D
CNN, with kernel width &, and C, channels, operates on the output of the first convolution to capture higher-order
and longer-range patterns by combining information from multiple local motifs. Finally, a global pooling
operation over the sequence dimension (e.g., max or average pooling) aggregates the position-wise features into
a fixed-length protein representation vector z,.

33 Interaction between Drug and Protein Sequence
3.3.1 Attention Blocks for Drug and Protein

Each branch passes its representation through an attention or gating block to refine the features before fusion. For
the drug branch, a gating vector is computed from the drug representation (for example using a small fully
connected layer followed by a sigmoid activation), and this gate is applied element-wise to z,to attenuate less
informative dimensions and amplify important ones. An analogous gating mechanism is applied to the protein

"/r . . .
representation z,, producing refined vectorsZdand“». This step allows the model to focus on the most predictive
latent features in each modality.

3.3.2 Feature Fusion
The refined drug and protein representations are then combined in the feature fusion block. A bilinear or similar

3 = ' T . . . . .
interaction function (for example® ~ “d Wy “p) can be used to compute an interaction score or attention weight
between the two embeddings. Based on this score, scalar weights for the drug and protein branches can be derived,

. . . . ; —" ; “’" . .
and a fused vector zyis formed by concatenating or mixing ®d%: and“»“r, where a;and a, quantify the relative
contribution of each branch. The fused representation zrencodes joint drug—protein information tailored to the
interaction task.

3.33 Fully Connected Layer with ReLU

The fused vector is passed through a fully connected (dense) layer with ReLU activation. This layer performs a
nonlinear transformation of zrto learn higher-level interaction features that combine the drug and protein
information in a task-specific way. It reduces or reshapes the fused feature space into a representation that is more
separable with respect to interacting versus non-interacting pairs, or different affinity values.

34 DTI Prediction

The final prediction layer outputs the interaction score using a fully connected network followed by a sigmoid
activation for classification or a linear activation for regression.

For clarity, the overall algorithmic workflow of the proposed framework is summarized in Table 1.

Table 1: Local Graph Transformer and Convolutional Attention Exchange Algorithm

Module Pseudocode

Input Drug SMILES d, Protein sequence p; Hyperparameters: k (subgraph radius), Hax
(attention heads), Lenc (encoder layers), k1,k», C1, Co; Predicted interaction score "y
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Drug Branch: Local G4« SMILES to graph(d)

Subgraphs For each atom i € V: x; < atom features(i) For each center atom ¢ € Vy:
Ve {i| distea(c,i) < k}
Ec«—{(ij)€EEa|ijEVe}

Local Subgraph Encoding For each subgraph S.:
X© — node features, 49 < adjacency
L' « normalized Laplacian
U©)  first r < |V,| eigenvectors
X (¢) « Concat(X(c), U(c))
H(c) — X (¢)
For /=110 Lenc:
Form =1 to Ha:
Om,Km,Vm — H(c)Wm
A < softmax(-)

Zm «— AmVm
H© « LayerNorm H + Concat( Z‘*”l))gc <« Pool(H©)

Protein Branch E, — Embed(p)
HY «— Conv1D(Ep,ki,C1) H(2) < Conv1D(H(1),k2,C2) z, < GlobalPool(H?®)

Fusion & Prediction zd'" — o(Wdzd) © zd zp' — o(Wpzp) O zp zy« Concat( adz;}.&pz;})y —
S(WReLU(W12)
3.5 Drug Input Embedding

Each drug is provided as a SMILES string and converted into a molecular graph
Ga= (Vo Ea), (D

where Vyis the set of atoms and £, < Vg% Vyis the set of chemical bonds. Every atom i € V;is mapped to a feature
vector x; € R™, forming

X1 -
(0) _ . |V | % Fo
d = : eR

x|Vl

From G,the adjacency matrix A, € {0,1}/7¥<"d g
1, (i,j)cE
d, AQ3) Hz{

0, otherwise
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3.6 Drug-Induced Local Subgraph Representation
3.6.1 Local Subgraph Construction from a Drug

Fodiiachishrélowsmal efPrapilsion basbRRIOLY defined as
ISSN: 1001-4055 .
Vol. 46 No. 03(Z6%55-) Ve={i € V| distgu(c.i) < k}, Ec={(ij) € Ea| ij € Vo). )

This vields the familv of local suberaphs
J J t=} i

Sa={S.| c € Va}, (6)
each capturing a functional fragment likely to determine binding.

3.6.2 Adjacency Matrix and Node Features

For a local subgraph S, with |V| = n., index its nodes as vi,...,v,.. The local adjacency matrix A© €

{0,1}ncxnc is

and the diagonal degree matrix is

dy,....dyv,), d; = A;j
D= diag(" " val) Zj N 4)
E., {e) _ L (vi,v5) €
& 0, otherwise
A,
and the node-feature matrix is
T,
() — : c Rucxﬂ.
T
X :Ih:.,‘(: . (8)

To encode structure, we build the normalized Laplacian
L(C) -7 (D(C))*%A(C)(D(f))*a" ©)

where D is the degree matrix of S.. Let the first » eigenvectors of L) be arranged in U© € R"". The final
subgraph input features combine attributes and structure:

{e) ¢ (e) ne X (Fy+r
¥ =[x U] e RrexFrn) (10)
3.7 Local Subgraph Encoder with Relative Multi-Head Attention
For attention head 4 = 1,...,H, the query, key, and value matrices are
(h) — y(e) (h) h) _ wilc (h) h) _ wic (h)
o = X'Iwy ,K((_ ) = X! )WK : V;.( ) = X )WV , (11

with o W W € RFutn <

(h)
A relative bias %i based on graph distance or structural encoding is added to the scaled dot-product logits:

QW KM
exp Qeikey + h
ol = ( Vi

ij Q.'QJKJ‘)T
Z(xp( T er )

(12)
The head output is
Z{(f..) — oMy ¢ Rn,‘xdk. (13)
Multi-head outputs are concatenated and projected:
Zc=Concath(:U""’Zf(tH))WO, (14)
followed by residual Add&Norm and MLP:
He= LayerNorm Xic) + Z('), (15)
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H. = LayerNorm He + MLP(HZ)), (16)
3.8 Subgraph and Drug-Level Representations
A subgraph embedding is obtained via pooling:
g= Pool H.em) € RY (17)

where Pool may be mean, max, or attention pooling. All subgraphs are aggregated with attention:

€e = wJ t‘dllh(ng,: - by), Be = %’ a8
za=*B.g.. (19)
c
3.9 Protein Sequence Embedding and Stacked 1D CNNs

The protein sequence p = (ai,...,ar) is tokenized into amino acids; each a,has embedding e(a,) € R?, giving e(a;)

o — c RLX Fp

E. (20)
e(ar)

With width &; and C; channels, the first 1D CNN is

k1—1
.h,(_l(j =0 z w((lf) By + 0
i=0 , (21)

producing HV € REVC!, A second 1D CNN with width k> and C; channels gives

ka—1
hii‘)’ =a Z wr(’g); ’ Hf(-:-); + bf:f)
with H(2) € RL2xC2 and
2 1,
2=Pool H ) ER™ (23)

This section presents a comprehensive experimental evaluation of the proposed drug—target interaction (DTI)
prediction framework. The objective of the experimental study is to assess the effectiveness of the proposed model
in comparison with existing methods. To ensure a fair and reliable evaluation, experiments were conducted using
two publicly available benchmark datasets, demonstrating the superior predictive capability of the proposed
approach.

4 EXPERIMENT ANALYSIS

This section presents the experimental evaluation and discusses the corresponding results. Experiments conducted
on two publicly available datasets demonstrate that the proposed model outperforms conventional approaches.

4.1 Dataset Description
4.1.1 Human Dataset

The Human dataset consists of a total of 33,984 drug—protein interaction pairs, including 3,369 confirmed positive
interactions. These interactions involve 1,052 unique drug compounds and 852 distinct protein targets. For model
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training and evaluation, the dataset is divided into 27,187 samples for training and 6,797 samples for testing. This
dataset provides a challenging and realistic benchmark for evaluating large-scale DTI prediction performance.

4.1.2 C. elegans Dataset

The C. elegans dataset contains 4,800 interaction samples, including 4,000 positive drug—target interactions. It
involves 1,434 distinct chemical compounds and 2,504 unique protein targets. The dataset is split into 3,840
samples for training and 960 samples for testing. Due to its diverse interaction patterns, this dataset is widely used
to validate the generalization ability of DTI prediction models.

4.2 Evaluation Protocol and Performance Metrics

To quantitatively evaluate the performance of the proposed DTI prediction model, a confusion matrix— based
evaluation protocol is adopted. The confusion matrix provides a detailed assessment of the model’s classification
behavior by categorizing predictions into four outcomes: True Positives (TP), False Positives (FP), True Negatives
(TN), and False Negatives (FN).

True Positives represent correctly identified interacting drug—target pairs, while True Negatives correspond to
correctly predicted non-interacting pairs. False Positives occur when the model incorrectly predicts an interaction
for a non-interacting pair, whereas False Negatives indicate missed interactions where true interacting pairs are
incorrectly classified as non-interacting. These four components form the basis for computing standard
performance metrics such as accuracy, precision, recall, and the area under the ROC curve (AUC).

4.3 Evaluation Metrics

The performance of the proposed drug—target interaction (DTI) prediction model is evaluated using standard
classification metrics derived from the confusion matrix, including Accuracy, Precision, Recall, F1-score, Area
Under the ROC Curve (AUC), and Area Under the Precision—Recall Curve (AUPR).

Accuracy measures the overall correctness of predictions and is defined as

TP+ TN
Accuracy =TP+TN+ FP+ FN, (24)

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives, respectively.

Precision evaluates the reliability of positive predictions, while Recall measures the ability to identify true
interactions:

TP TP
Precision =T F + F'P, Recall =TP + FN. (25)

The F1-score provides a balanced measure of Precision and Recall and is computed as
2 x Precision x Recall

Fl-score =

Precision + Recall (26)

The Area Under the Receiver Operating Characteristic Curve (AUC) evaluates the model’s ability to discriminate
between interacting and non-interacting drug—target pairs across different thresholds, with higher values
indicating better separability.

The Area Under the Precision—Recall Curve (AUPR) summarizes the trade-off between Precision and Recall over
all thresholds and is particularly informative for imbalanced datasets. Higher AUPR values indicate more effective
prioritization of true drug—target interactions.

4.4 Performance Analysis of the CNNRMHSA-LGTEN

Table 2 presents a comprehensive performance comparison on the Human dataset. The CNNRMHSALGTEN
consistently outperforms existing baseline and state-of-the-art DTI prediction models across all evaluation
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metrics. In terms of overall classification performance, the proposed approach achieves the highest accuracy of

0.9726, demonstrating its superior predictive capability.

The proposed model also attains the best AUC value of 0.9898, indicating a strong ability to discriminate between
interacting and non-interacting drug—target pairs. This improvement over attention-based models confirms the

benefit of incorporating local subgraph-aware representations with relative multi-head selfattention.

Moreover, the CNNRMHSA-LGTEN records the highest precision (0.9719) and recall (0.9734), reflecting a
balanced trade-off between false positive reduction and true interaction identification. The superior AUPR score
of 0.9695 further highlights the robustness of the model in prioritizing true interactions in imbalanced datasets.
Finally, the highest F1-score of 0.9726 demonstrates the overall stability and effectiveness of the proposed

framework for DTI prediction.

Table 2: Performance Comparison on the Human Dataset

Dataset Method Acc. AUC Prec. Recall AUPR F1

Human RWR [33] - 0.8375 0.7707 0.7243 0.8165  0.7466
DrugE-Rank [34] - 0.8562 0.7181 0.8668 0.8257  0.7851
DeepConv-DTI [35] - 0.9738  0.9295 09175 09437  0.9204
DeepCPI [36] - 0.9692 09187 0.9210 0.9399  0.9096
MHSADTI [28] 09452 0.9822 0.9472 09365 0.9568 0.9346
RMHSA GAEN [37] 0.9517 0.9873 0.9508 0.9524 0.9637 0.9516
RMHSA GTEN [38] 0.9630 0.9895 0.9622 0.9636 0.9629  0.9624
CNNRMHSA-LGTEN 09726 0.9898 0.9719 0.9734 0.9695 0.9726

The outcomes demonstrate that the CNNRMHSA-LGTEN outperforms the other algorithms, indicating that it is
active in detecting images. In terms of Accuracy,AUC,Precision,Recall and AUPR,F1 Score, our technique

performs at 0.9726, 0.9898,0.9719,0.9734,0.9695,0.9726.
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Figure 2: AUC comparison of different methods on the Human dataset.
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In terms of AUC comparison on the Human dataset the CNNRMHSA-LGTEN achieves the highest AUC
performance, improves AUC by approximately 0.03% compared to the approach in [38] and by 0.25% over the
method in [37]. Furthermore, it achieves a gain of about 0.77% in [28], shows an improvement of nearly 1.64%
over the model in [35] and 2.13% over the method in [36], approximately 15.6% over [34] and 18.2% over [33].
These results confirm that the proposed framework offers superior class separability and more reliable
discrimination between interacting and non-interacting drug—target pairs.

The F1-score comparison demonstrates that the proposed framework achieves 1.03% in [38] and by about 2.21%
in [37], in [28], [36], and [35] by approximately 3.84%, 4.51%, and 5.33%, respectively and about 23.83% over
[34] and 30.20% in [33]. These gains highlight the effectiveness of the proposed model in delivering balanced
and reliable DTI prediction performance.

The AUPR comparison emphasizes the robustness of the proposed framework in ranking true drug—target
interactions under imbalanced conditions. The CNNRMHSA-LGTEN improves AUPR by approximately 0.33%
over the attention-based model in [38] and by about 0.60% over the approach in [37]. When compared with deep
learning baselines, it achieves gains of nearly 1.08% over [28], 2.60% over [36], and 2.75% over [35]. More
substantial improvements are observed against traditional methods, with increases of approximately 17.45% over
[34] and 18.75% over [33]. These results confirm the superior ranking capability and stability of the proposed
framework.

The precision comparison on the Human dataset demonstrates that the proposed framework consistently
outperforms existing approaches and achieves the highest precision, improving by approximately 0.36% over the
attention-based model in [28] and by about 0.97% compared to the graph-transformer-based approach in [38] and
found that 0.77% over the graph-attention exchange network model proposed in [37]. Furthermore, the proposed
framework achieves gains of nearly 2.13% and 3.21% over the deep learning models reported in [35] and [36],
respectively. More substantial improvements are observed when compared with traditional network-based
methods, with precision gains of approximately 23.27% over [34] and 18.01% over [33].

In terms of Recall, Figure ?? shows that the proposed framework achieves the effectiveness in identifying true
drug—target interactions. The CNNRMHSA-LGTEN achieves consistent recall improvements, outperforming the
attention-based approach in [28] by approximately 1.59%. It also demonstrates gains of about 0.99% over the
graph-attention exchange network model reported in [37] and approximately 1.07% over the graph-transformer-
based approach in [38]. Furthermore, the proposed framework surpasses the deep learning models in [36] and [35]
by about 3.14% and 3.49%, respectively. In comparison with traditional network-based methods, notable recall
improvements of approximately 8.56% over [34] and 22.81% over [33] are observed. These results confirm that
the proposed framework effectively reduces false positive predictions while maintaining high reliability in drug—
target interaction identification.

Table 3: Performance Comparison on the C. elegans Dataset

Dataset Method Acc. AUC Prec. Recall AUPR F1

C. elegans ~ RWR [33] - 0.8493  0.7860 0.7128 0.8212  0.7475
DrugE-Rank [34] - 0.8221 0.7906 0.7474 0.8322  0.7684
DeepConv-DTI [35] - 0.9782 09435 0.9423 09711 09579
DeepCPI [36] - 0.9758 0.9393 0.9271 09571  0.9394
MHSADTI [28] 0.9454 09838 0.9465 0.9451 0.9832  0.9763
RMHSA GAEN [37] 0.9654 09867 0.9652 0.9657 0.9887  0.9655
RMHSA GTEN [38] 0.9720 0.9889 09719 09723 0.9893  0.9721
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CNNRMHSA-LGTEN 0.9827 0.9896 0.9825 0.9829 0.9899  0.9827

In terms of Precision, the proposed framework achieves the highest performance on the C. elegans dataset,
improving by approximately 1.10% over the graph-attention exchange network in [37] and 0.91% over the graph-
transformer-based approach in [38]. It further demonstrates gains of 3.61% and 5.53% over deep learning models
in [28] and [36], respectively, while achieving substantial improvements of over 23% compared to traditional
methods in [33].

In terms of Recall, the CNNRMHSA-LGTEN consistently outperforms all baselines, achieving improvements of
approximately 1.06% over [37] and 1.07% over [38]. More notable gains of 3.79% and 4.05% are observed over
deep learning approaches in [28] and [36], respectively. Compared with traditional networkbased methods, recall
improvements exceeding 27% are achieved over [33]

In terms of AUC, the proposed framework demonstrates superior discriminative capability, achieving
improvements of approximately 0.07% over [38] and 0.30% over [37]. It further outperforms deep learning
baselines in [28], [36], and [35] by margins exceeding 0.58%, while achieving significant gains of over 20%
compared to traditional methods in [33].

In terms of AUPR, the CNNRMHSA-LGTEN achieves the highest ranking performance, improving by
approximately 0.06% over [38] and 0.12% over [37]. It also demonstrates consistent gains of more than 1.20%
over attention-based and deep learning models in [28] and [36], while outperforming traditional approaches in
[33] by over 20%.
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Figure 7: AUC comparison on the C. elegans dataset.
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Figure 10: AUPR comparison on the C. elegans dataset.
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In terms of Fl-score, the proposed framework achieves a superior balance between precision and recall,
outperforming graph-based and attention-based approaches in [38] and [37] by approximately 1.08% and 1.78%,
respectively. It further surpasses deep learning baselines in [28] and [36] by over 2.50%, and achieves substantial
improvements exceeding 31% over traditional methods in [33].

5 Conclusion

In this work, we presented a CNNRMHSA-LGTEN: An Efficient Local Graph Transformer and Convolutional
Attention Exchange Network for Drug Target Interaction Prediction for accurate and robust drug—target
interaction (DTI) prediction. Motivated by the observation that molecular binding behavior is largely governed
by fine-grained chemical substructures rather than solely by global molecular topology, the proposed framework
explicitly integrates local subgraph modeling into an attention-driven graph representation learning
paradigm.Unlike conventional graph neural network—based DTI models that primarily focus on global
aggregation, the proposed approach constructs k-hop local concept subgraphs centered around individual atoms
to preserve chemically meaningful functional fragments. By encoding these subgraphs using a relative multihead
self-attention mechanism, the model effectively captures both attribute-level semantics and structural
dependencies within local molecular neighborhoods. This design allows the learned drug representations to remain
sensitive to functional motifs such as aromatic rings and heterocycles that are critical for binding specificity.On
the protein side, stacked one-dimensional convolutional neural networks were employed to extract hierarchical
residue-level patterns from amino acid sequences, enabling the model to capture both local and higher-order
sequence motifs. An attention-based gating and fusion strategy was further introduced to adaptively integrate drug
and protein representations, ensuring that interaction-relevant features from each modality are emphasized during
prediction.

Extensive experimental evaluations demonstrate that the proposed CNNRMHSA-LGTEN network consistently
outperforms existing state-of-the-art DTI prediction models across multiple evaluation metrics. These results
confirm that explicitly modeling local chemical substructures, combined with attention-driven representation
learning, leads to more discriminative and robust drug—target interaction predictions. Beyond performance gains,
the subgraph-aware design also enhances model interpretability by highlighting which local molecular regions
contribute most strongly to predicted interactions.

Despite its effectiveness, several avenues for future work remain. First, integrating protein structural information,
such as contact maps or three-dimensional conformations, could further improve interaction modeling. Second,
adaptive or learned subgraph radius selection may better capture variable-sized functional motifs across diverse
compounds. Finally, extending the proposed framework to multitask settings, such as joint prediction of binding
affinity, selectivity, and toxicity, represents a promising direction for advancing data-driven drug discovery.
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Overall, this study demonstrates that local subgraph awareness, when combined with relational multihead self-
attention, provides a powerful and flexible foundation for next-generation DTI prediction models and offers
valuable insights for the development of more interpretable and biologically grounded computational drug
discovery methods.
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