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Abstract:- Bridging communication gaps for the deaf and mute community remains an open AI challenge, 

demanding systems that go beyond static sign recognition toward adaptive, emotion-aware interaction. While 

existing research has advanced isolated gesture recognition, few works address dynamic sentence translation, con- 

textual understanding, and learner adaptability in real-world envi- ronments. This review analyzes recent 

developments in multimodal learning—integrating vision, text, and speech—to enable seamless bidirectional 

communication and personalized education. It highlights the evolution from CNN-based recognition to 

transformer-driven sign language understanding and avatar-based delivery. This review synthesizes emerging 

multimodal approaches that blend recognition, translation, and emotion-aware adaptation into a unified assistive 

learning framework. 
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1. Introduction 

Advancements in deep learning have significantly trans- formed the domains of sign language recognition (SLR), 

facial emotion recognition (FER), and adaptive learning platforms (ALPs). In SLR, hybrid architectures such as 

CNN–LSTM models effectively combine spatial feature extraction with temporal sequence modeling, enabling 

accurate recognition of isolated signs, though at the cost of high computational demands [1], [3]. Recurrent CNNs 

(RCNNs) extend this capability to continuous sign streams without explicit seg- mentation, demonstrating 

robustness in real-time translation tasks [2]. Meanwhile, LSTM-only models present a resource- efficient 

alternative for simpler recognition scenarios [4], and lightweight CNN-based methods prioritize speed and 

deploya- bility for interactive gesture recognition [5]. Transfer learning from powerful CNN backbones has further 

improved recog- nition accuracy, with some ensemble approaches achieving near-perfect performance on specific 

sign language datasets [6], [7]. Emerging transformer-based architectures, including the Gated-Logarithmic 

Transformer and multilingual models like AfriSign, offer enhanced sequence modeling for complex translation 

tasks [8], [9]. 

Parallel to SLR developments, FER has benefited from CNN-based and hybrid temporal–spatial models capable 

of recognizing nuanced emotional states in real time [11]–[13]. These systems, especially when integrated with 

multimodal inputs, have potential applications in adaptive learning and human–computer interaction [14], [15]. 

In education, AI- enabled ALPs leverage personalization algorithms, affective computing, and inclusive design 

principles to cater to diverse learners’ needs [16]–[18]. Machine learning techniques, in- cluding neural networks 

for learning style detection and gam- ification strategies, have shown promise in boosting learner engagement and 

effectiveness [19], [20]. Despite these ad- vances, challenges remain in achieving scalability, robustness under 

unconstrained conditions, and balanced performance across modalities—highlighting the need for further research 

and optimization. 
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2. Literature Review 

A. CNN–LSTM and Recurrent CNN-Based Methods 

CNN–LSTM hybrids have proven effective in capturing both spatial and temporal characteristics of sign language 

ges- tures. Spatial features, such as hand orientation and shape, can be extracted using pre-trained CNN backbones 

like ResNet-50 and then modeled temporally using LSTMs to capture gesture dynamics [1]. Attention 

mechanisms further refine this process by emphasizing the most relevant frames, enhancing accuracy (≈ 92%) 

over traditional CNN–LSTM approaches [3]. These architectures perform well on isolated sign datasets such as 

RWTH-PHOENIX, achieving accuracies between 85–90% [1], and benefit from transfer learning to reduce 

training time. Recurrent convolutional neural networks (RCNNs) integrate convolutional feature extraction with 

recurrent temporal mod- eling to process continuous sign streams without explicit segmentation [2]. By employing 

staged optimization—training convolutional layers first and then recurrent layers—they address vanishing 

gradient issues and improve convergence stability, achieving 80–85% accuracy in realistic continuous signing 

tasks. 

B. LSTM-Only and Lightweight CNN Models 

LSTM-only approaches bypass CNN-based spatial process- ing, directly consuming raw or lightly preprocessed 

video frames to learn temporal gesture patterns [4]. This reduces complexity and makes such systems attractive 

for resource- constrained environments, with 88–90% accuracy on Indian Sign Language datasets. Lightweight 

CNNs for real-time ges- ture recognition prioritize speed and deployability [5], incor- porating efficient hand-

localization and compact architectures to run at interactive frame rates on commodity hardware. Although robust 

to environmental variations via data augmen- tation, their shallow temporal modeling limits effectiveness for 

longer sequences. 

C. Transfer Learning and CNN Ensemble Methods 

Transfer learning from powerful CNN backbones improves recognition accuracy while reducing training data 

require- ments. In [6], ResNet50 and VGG16 were integrated into a Nepali translation pipeline with gTTS for 

speech output, achieving over 99% accuracy. Ensemble methods combin- ing multiple pretrained CNNs (e.g., 

Xception, DenseNet121, ResNet50) with max-voting achieved 99.92% on Bangla Sign Language datasets [7]. 

While highly accurate, these models can be computationally heavy and lack signer-independent evaluations. 

D. Transformer and Hybrid Vision Models 

Transformer-based architectures excel in long-range tempo- ral dependency modeling. The Gated-Logarithmic 

Transformer (GLoT) [8] outperforms baseline transformers in BLEU-4 scores, while AfriSign [9] demonstrates 

multilingual sign language translation with 94.6% accuracy. Hybrid CNN–ViT models [10], combined with 

Improved Residual Feed-Forward Networks (IRFFN) and Adaptive Tuna Swarm Optimization (ATSO), have 

achieved 98.69% accuracy on two-handed ISL recognition. These architectures combine local feature extrac- tion 

with holistic context but remain resource-intensive. 

E. CNN-Based and Lightweight Emotion Recognition 

Facial emotion recognition (FER) systems using CNNs [11] detect seven basic emotions in real time, informing 

adaptive teaching strategies. Lightweight CNNs with depthwise sep- arable convolutions [12] achieve similar 

accuracy with lower computational needs, enabling mobile deployment. Challenges include reduced robustness 

under varied lighting, occlusion, and cultural differences in expression. 

F. Hybrid and Multimodal Emotion Recognition 

Hybrid FER approaches combine spatial and temporal mod- eling with multimodal inputs. ResNet50 with CBAM 

and tem- poral convolutional networks (TCNs) [13] achieves (≈ 97%) accuracy for continuous monitoring, while 

multimodal systems [14] integrating facial and textual sentiment improve virtual assistant responsiveness. 

Reviews [15] highlight the promise of TCNs but emphasize the need for standardized cross-dataset benchmarks. 
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G. Adaptive Learning Platforms and Inclusive Design 

AI-enabled adaptive learning platforms (ALPs) integrate personalization algorithms and inclusive design 

principles to cater to diverse learner needs. Frameworks like the multilevel OER adaptation approach [16] leverage 

accessibility metadata and user profiling. Reviews [17] identify dynamic learner modeling, adaptive sequencing, 

and affective computing as core ALP components, while UDL-based frameworks [18] offer inclusive guidelines. 

However, large-scale deployment studies remain scarce, and privacy concerns persist. 

H. Machine Learning for Personalization and Engagement 

Machine learning drives personalization in adaptive learning environments. Systematic reviews [19] report 

increased use of neural networks for learning-style detection, while gamifica- tion studies [20] show positive 

impacts from collaboration- based and motivation-driven approaches. Integration of gam- ification into adaptive 

algorithms remains an open research direction. 

Table I: Model performance on datasets with accuracy 

 

3. Objectives of the System 

The primary aim of this research is to develop a robust, accurate, and efficient system for recognizing sign 

language, thereby improving communication for hearing-impaired indi- viduals through advanced deep learning 

techniques. The study integrates Convolutional Neural Networks (CNNs) for spatial feature extraction, such as 

ResNet [1], and Long Short-Term Memory (LSTM) networks for temporal sequence modeling [2], enabling 

recognition of both isolated and continuous sign gestures with high accuracy. 

 

Figure 1: Proposed CNN–LSTM SLR Pipeline 
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Model Development: This work focuses on building and evaluating a hybrid CNN–LSTM model, leveraging 

architec- tures such as ResNet [1] and attention-based mechanisms [3] to enhance the ability to capture fine-

grained hand and finger movements. 

Feature Enhancement: Attention mechanisms [3] are em- ployed to prioritize critical spatial–temporal regions 

in sign language videos, effectively reducing noise and improving classification accuracy. 

Data Preprocessing: To ensure model robustness, sign lan- guage video datasets [6] undergo standardization and 

prepa- ration, including background normalization, frame alignment, and hand/body posture detection. 

Benchmark Testing: The proposed system is compared against state-of-the-art approaches [4], [7], [10] to 

highlight improvements in recognition accuracy, reliability, and real- time applicability. 

Real-Time Deployment: Models are optimized for mobile and embedded devices [5], [6], enabling live 

translation of sign language into text or speech in real-world scenarios. 

Cross-Language Adaptation: Finally, transfer learning methods [8], [9] are incorporated to adapt the system for 

multiple sign languages and dialects, ensuring scalability and inclusivity across linguistic contexts. 

By meeting these objectives, the research supports the creation of inclusive communication tools aligned with AI- 

for-social-good principles [17], [19]. 

4. Methodology 

This study employs a multi-stage deep learning framework integrating sign language recognition (SLR) and 

emotion- aware adaptive learning. The methodology comprises four components: data acquisition and 

preprocessing, model archi- tecture design, training and optimization, and integration with adaptive learning 

platforms (ALPs). 

A. Data Acquisition and Preprocessing 

Public datasets such as RWTH-PHOENIX and Indian Sign Language (ISL) corpora are utilized for capturing 

isolated and continuous sign gestures [1], [2], [4], while FER2013 provides diverse facial expression samples for 

facial emotion recog- nition (FER) [11]. Preprocessing includes region-of-interest localization (hands or face), 

normalization, frame resizing, and augmentation (random cropping, brightness adjustment, temporal frame 

sampling) to enhance robustness against envi- ronmental variations [5], [12]. 

 

Fig. 2: System flowchart for Sign Language Recognition 

B. Model Architecture Design 

The SLR module combines spatial and temporal modeling via CNN–LSTM hybrids [1], [3], recurrent CNNs [2], 

and transformer-based architectures for long-range temporal de- pendency modeling [8], [9]. Transfer learning 
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from pre-trained CNNs (ResNet50, VGG16, DenseNet121) improves accuracy and reduces training time [6], [7]. 

For FER, lightweight CNNs with depthwise separable convolutions [12] and hybrid attention-based models [13], 

[14] are employed for real-time performance. 

C. Training and Optimization 

Training follows staged optimization [2], with convolutional layers pre-trained before fine-tuning temporal or 

transformer layers. Hyperparameters are optimized using metaheuristic strategies such as Adaptive Tuna Swarm 

Optimization (ATSO) [10]. Loss functions include categorical cross-entropy for classification and sequence-to-

sequence loss for translation. Early stopping, learning rate scheduling, and transfer learning help prevent 

overfitting and improve convergence. 

D. Integration with Adaptive Learning Platforms 

The trained SLR and FER models are integrated into AI-enabled ALPs [16], [17]. FER informs real-time con- 

tent adaptation by detecting students’ emotional states [11], [14], while SLR enables sign language-based 

interaction for hearing-impaired learners [6], [9], [18]. The ALP leverages personalization algorithms, affective 

computing, and inclusive design frameworks [17], [18], [19], with gamification elements embedded to enhance 

engagement [20]. 

5. Benefits 

The integration of AI-based sign language recognition en- ables seamless communication for deaf and mute 

learners by translating gestures from video frames into accurate text or speech outputs, thereby fostering social 

inclusion, inde- pendence, and equal participation in daily activities [1], [3]. This technology significantly reduces 

communication barri- ers between hearing-impaired individuals and the hearing community, enabling meaningful 

participation in mainstream education and professional environments [6]. 

Neural Machine Translation (NMT) ensures that recognized signs are not only transcribed but also converted into 

gram- matically correct and contextually relevant sentences [9], [12]. Instead of isolated words, learners receive 

coherent, struc- tured feedback, which makes complex educational content more accessible, supports literacy 

development, and facilitates smoother two-way communication. 

Adaptive Learning Algorithms tailor educational materials based on learner performance, pace, and preferences 

[15]. This dynamic customization accommodates varied cognitive and motor abilities in differently abled students, 

improving engagement, retention, and long-term learning outcomes. By adapting content delivery in real time, 

such systems can empower learners to build confidence and progress at their own rhythm. 

Emotion-Aware AI plays a complementary role by detect- ing facial expressions and emotional cues to adjust 

teaching strategies as learning unfolds [2], [4]. By identifying signs of frustration, confusion, or boredom, the 

system can respond empathetically, providing encouragement or adjusting task difficulty. This fosters a more 

human-like interaction, creat- ing a supportive, motivational, and highly engaging learning environment. 

6. Results and Discussion 

Deep learning models such as CNNs, LSTMs, and hybrid ResNet architectures have demonstrated recognition 

accuracies above 95% in controlled environments [1], [3]. Temporal mod- eling from video frames has proven 

particularly effective, as it captures the fluid motion of continuous signs, achieving higher recognition rates 

compared to static image-based approaches [6]. These results validate the potential of hybrid models for real-time 

applications. 

In terms of translation, Transformer-based architectures and sequence-to-sequence models offer significant 

improvements in converting recognized signs into natural language text [9], [12]. They preserve grammatical 

structure and semantic context while supporting multilingual adaptation and integra- tion of domain-specific 

vocabulary. This makes them highly versatile for use in classrooms, workplaces, and multilingual communities. 

Adaptive Learning Algorithms further enhance the system’s educational value. Studies show that learners exposed 

to adaptive systems report higher satisfaction, faster skill ac- quisition, and longer retention compared to 
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traditional static teaching methods [15]. By using reinforcement learning and personalized recommendation 

engines, the system modifies lesson complexity, pacing, and modality dynamically, ensuring learning remains 

relevant and engaging. 

For Emotion-Aware AI, the combination of facial recogni- tion with attention mechanisms (e.g., CBAM, Vision 

Trans- formers) and temporal models (TCNs) has achieved high real- time accuracy—up to 97%—in detecting 

emotional states [2], [4]. When embedded into learning platforms, these models provide an empathetic dimension 

to digital interaction, ad- dressing frustration early and sustaining motivation. 

Finally, the integration of these four elements into an Assis- tive Ecosystem demonstrates transformative potential. 

A single application that unifies accurate sign recognition, meaningful translation, adaptive learning, and 

empathetic interaction can create a holistic, inclusive solution tailored for deaf and mute students [1], [4], [9], 

[15]. 

7. Key Challenges 

Despite encouraging progress, several challenges remain unresolved. A major limitation is the lack of data 

diversity and availability, since large annotated datasets covering sign language dialects and emotion recognition 

in differently abled populations are scarce [1], [3]. Without this diversity, models risk bias and reduced 

generalization in real-world contexts. 

Another barrier is contextual understanding within NMT. While current systems perform well on literal 

translations, they struggle to preserve idiomatic expressions, cultural nuances, and conversational tone [9]. This 

often results in outputs that are technically accurate but awkward or unnatural, limiting usability in day-to-day 

interactions. 

Real-time integration also remains difficult. Combining sign recognition, translation, adaptive learning, and 

emotion detec- tion into a single mobile-friendly application requires models that are both computationally 

efficient and highly accurate [5], [7]. Achieving this balance remains a core technical hurdle. 

In terms of personalization, user adaptability presents chal- lenges. Adaptive systems require sufficient learner 

interaction data before tailoring content effectively, which may delay benefits for first-time users [15]. New 

strategies for rapid personalization are needed to bridge this gap. 

For emotion detection, maintaining robustness across envi- ronments is challenging. Variations in lighting, 

camera quality, gesture occlusions, and cultural differences in expressing emo- tions can significantly degrade 

system accuracy [2], [4]. 

Finally, ensuring deployment accessibility is critical. For maximum impact, applications must operate effectively 

on low-cost devices and under low-bandwidth conditions [8]. Without this, adoption will remain limited in rural 

or under- served communities where the need is often greatest. 

8. Future Research Directions 

While this study demonstrates significant advancements, several promising directions remain for exploration. One 

of the most pressing is expanding vocabulary. Current models are often restricted to limited lexicons; scaling to 

larger vocabu- laries, idiomatic expressions, and complex grammar structures will bring systems closer to natural 

human communication [7], [9], [10]. 

Another key avenue is multi-modal integration, combining video-based gesture recognition with depth sensors, 

skeletal pose estimation, and facial expression analysis to capture richer semantic context [11], [13], [14]. This 

integration can make recognition more robust across diverse environments and signing styles. 

Edge deployment is equally important. Developing lightweight models optimized for smartphones, AR glasses, 

and IoT devices [5], [6] will enable widespread adoption without dependence on high-end GPUs, ensuring 

accessibility in everyday contexts. 
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Cross-language learning offers another promising path. Transfer learning approaches can enable adaptation 

across dif- ferent sign languages with minimal annotated data, addressing global communication needs [8], [9]. 

Strengthening robustness to environmental variations will also be vital, as models must reliably handle differences 

in lighting, backgrounds, clothing, and signing environments [4], [10]. 

In parallel, user personalization will play a major role. Systems that adapt to an individual’s signing style and 

learn- ing patterns over time [17], [18] can deliver more natural, effective, and engaging experiences. 

At the application level, future research can explore in- tegration with assistive technologies, embedding 

recognition tools in video conferencing platforms, classroom kiosks, or wearable devices for seamless real-world 

use [16], [20]. 

Finally, strong emphasis must be placed on ethical con- siderations. Privacy-preserving machine learning 

approaches [19] will ensure that sensitive data, such as sign recordings and emotional states, are handled securely 

and responsibly, fostering trust in these technologies. 

9. Conclusion 

This research emphasizes the advancements in sign lan- guage recognition through hybrid deep learning 

frameworks such as CNN–LSTM, which build upon prior works [1]– [4], [7], [10]. These models achieve 

improved recognition accu- racy for both isolated and continuous gestures, demonstrating robustness across 

diverse acquisition conditions. Compared with traditional approaches, the integration of convolutional and 

recurrent architectures offers superior adaptability and performance, aligning with findings in earlier studies [1], 

[4], [7]. 

The contributions outlined here have practical implications for assistive technologies that enhance accessibility in 

com- munication [6], [9], [16], supporting inclusive education and bridging barriers for differently abled learners. 

Looking ahead, adopting advanced architectures such as Transformers [8], [10] and embedding privacy-focused, 

real-time solutions [17], [19] will be essential for achieving scalable, trustworthy, and user- centered systems. 

By unifying sign recognition, adaptive personalization, and ethical AI design, future research can foster more 

inclusive, accessible, and empathetic human–computer interaction. 

References 

[1] P. V. M. S. Prasad and K. N. V. Madhusudana, “Video-Based Sign Language Recognition via ResNet and 

LSTM Network,” Imaging, vol. 10, no. 6, pp. 149–161, Jun. 2024, doi: 10.3390/imaging10060149. 

[2] R. Cui, H. Liu, and C. Zhang, “Recurrent Convolutional Neural Networks for Continuous Sign Language 

Recognition by Staged Optimization,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog- nit. (CVPR), 

Honolulu, HI, USA, Jul. 2017, pp. 1610–1618, doi: 10.1109/CVPR.2017.176. 

[3] M. Shahin and M. I. Daoud, “Isolated Video-Based Sign Language Recognition Using a Hybrid CNN-LSTM 

Framework Based on Atten- tion Mechanism,” Electronics, vol. 13, no. 7, pp. 1229–1242, Apr. 2024, doi: 

10.3390/electronics13071229. 

[4] A. K. Sharma and S. S. Bhatia, “ISL Sign Language Recognition Using LSTM-Driven Deep Learning 

Model,” Journal of Engineering Science, vol. 15, no. 4, pp. 245–256, 2024. 

[5] O. Ko¨pu¨klu¨, A. Gunduz, N. Ko¨se, and G. Rigoll, “Real-time Hand Gesture Detection and Classification 

Using Convolutional Neural Net- works,” arXiv preprint arXiv:1901.10323, Oct. 2019. 

[6] M. Bhattarai, S. Ghimire, and P. Pokharel, “Advancing human–computer interaction: An American Sign 

Language to Nepali text and speech translation system,” Visual Informatics, vol. 8, pp. 68–77, 2024, doi: 

10.1016/j.visinf.2024.01.005. 

[7] M. M. Hossain, M. S. Alam, and M. A. H. Akhand, “Bangla Sign Language Recognition using a Max Voting-

based Ensemble Model,” ICT Express, 2025, doi: 10.1016/j.icte.2025.01.002. 

[8] C. F. Gonzalez, N. Ke, and A. Bharambe, “GLoT: Gated Loga- rithmic Transformer for Sign Language 

Translation,” arXiv preprint arXiv:2502.12223, 2025. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 47 No. 01 (2026) 

__________________________________________________________________________________ 

192 

[9] A. O. Awobuluyi, O. Awobuluyi, and T. Adewumi, “AfriSign: African Sign Language Translation for 

Humanitarian Applications,” Journal of Computational Social Science, vol. 8, no. 1, pp. 1–21, 2025, doi: 

10.1007/s42001-025-00227-7. 

[10] S. S. Kaur, R. Kumar, and G. Singh, “ISL Two-Handed Dynamic Sign Language Recognition Using 

Enhanced Convolutional Transformer with Adaptive Tuna Swarm Optimization,” Sensors, vol. 25, no. 17, 

pp. 3652, 2025, doi: 10.3390/s25173652. 

[11] S. A. Salloum, K. M. Alomari, A. M. Alfaisal, R. A. Aljanada, and A. Basiouni, “Emotion Recognition for 

Enhanced Learning: Using AI to Detect Students’ Emotions and Adjust Teaching Methods,” Smart Learning 

Environments, 2025, doi: 10.1186/s40561-025-00212-9. 

[12] D. B. Gunda and R. Bhavani, “A Lightweight Facial Emotion Recogni- tion Model for Resource-Constrained 

Devices,” 2024. 

[13] M. Aly, “Revolutionizing Online Education: Advanced Facial Ex- pression Recognition for Real-Time 

Student Progress Tracking via Deep Learning Model,” Multimedia Tools and Applications, 2025, doi: 

10.1007/s11042-025-19163-4. 

[14] S. G. Rajesh, S. V. Madangarli, G. S. Pisharady, and R. Subrahmanyam, “Enhancement of Virtual Assistants 

Through Multimodal AI for Emo- tion Recognition,” Journal of Intelligent Systems and Internet of Things, 

2025. 

[15] M. A. Puspasari, D. Yulianti, and M. T. Ibrahim, “Emotion Categorization from Facial Expressions: A 

Review of Datasets, Methods, and Research Directions,” Neurocomputing, 2025, doi: 10.1016/j.neucom. 

2025.128341. 

[16] P. Ingave´lez-Guerra, R. A´ lvarez-Garc´ıa, and M. J. Rodr´ıguez-Triana, “Automatic adaptation of open 

educational resources: An approach from a multilevel methodology based on students’ preferences, 

educational special needs, artificial intelligence, and accessibility metadata,” Com- puters and Education: 

Artificial Intelligence, vol. 3, Art. no. 100063, 2022, doi: 10.1016/j.caeai.2022.100063. 

[17] Y. Tan, W. Zhang, and S. Liu, “Artificial intelligence-enabled adaptive learning platforms: A review,” 

Computers and Educa- tion: Artificial Intelligence, vol. 6, Art. no. 100262, 2025, doi: 10.1016/j.caeai. 

2025.100262. 

[18] K. Song, H. Weng, X. Zhao, and Y. Wang, “A framework for in- clusive AI learning design for diverse 

learners,” Computers and Ed- ucation: Artificial Intelligence, vol. 5, Art. no. 100208, 2024, doi: 10.1016/j. 

caeai.2024.100208. 

[19] E. Essa, S. Ali, and A. Abdellatif, “Personalized adaptive learn- ing technologies based on machine learning 

techniques to identify learning styles: A systematic literature review,” Computers and Ed- ucation: Artificial 

Intelligence, vol. 4, Art. no. 100178, 2023, doi: 10.1016/j.caeai.2023.100178. 

[20] L. Cui, X. Li, and Z. Li, “Impact of gamified learning experience on on- line learning effectiveness,” 

Computers and Education: Artificial Intelli- gence, vol. 5, Art. no. 100197, 2024, doi: 10.1016/j.caeai.2024. 

100197. 


