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ABSTRACT: A robust error correction method is essential to address the growing demand for accurate data

transmission in global Navigation satellite network reliably. Turbo Code Decoder (TCD) and Viterbi Decoder
(VD) convolutional coding systems are in wide use due to their capability in improving the data integrity. These
methods have limitation to handle high bit error rate and to adapt to continuous changing signal condition found
in urban environment. This work presents machine learning based improved Forward Error Correction (ML-FEC)
System. This system combines Convolutional Neural Network with conventional Error rectification process. The
proposed ML-FEC improves reduction in complexity of computation, Error detection and correction capabilities.
This is achieved by incorporating a novel approach of combining Low Density Parity Check algorithm with
machine learning model that can adjust to transmission conditions in real time. The error correction efficiency has
been improved by adopting new methods like reinforcement learning based parameters and adaptive learning rate
adjustments. The proposed system has achieved 0.20% reduction in Bit Error Rate and an improvement of 0.15%
in throughput of complete data in comparison to conventional systems. In addition, the load of computation is
decreased by 0.25% which addresses the main drawbacks of increased complexity in existing systems. From all
these observations, ML-FEC offers to be a viable solution for present systems, by offering increases performance
and reliability in complex transmission environments.

Keywords: Global Navigation Satellite Networks (GNSS), Forward Error Correction (FEC), Convolutional
Coding Systems (CCS), Machine Learning (ML), Bit Error Rate (BER), Convolutional Neural Networks (CNNs),
Data Integrity

1. Introduction

Global Navigation Satellite Networks (GNSS) are key infrastructure services, which offer positioning and
timing functions used in a wide range of applications from civilian to military. Ensuring the integrity of data
transmission between GNSS is crucial as even a small error can create large discrepancies in navigation and
positioning. Voice networks use error correction techniques, like Viterbi Decoder (VD) and Turbo Code
Decoder (TCD), that are example of Convolutional Coding Systems (CCS) in order to reduce transmission
errors, improve data integrity [1] [2].

However, there are significant drawbacks with these conventional systems particularly in high bit error rate
(BER) and varying signal conditions. Obviously, the nature of them being fixed limits how well they can adapt
in an urban or otherwise difficult environment with lots of signal interference. In addition to this, these systems
have high computational complexity that requires longer processing time and hence are not efficient for real-
time applications.

The mounting challenges have led to the adoption of machine learning techniques in GNSS technology lately.
One promising research direction involves machine learning models like Convolutional Neural Networks
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(CNN) to tackle this task, which can adapt the capacity of error correction dynamically due to diverse
transmission conditions. These new capabilities will help to overcome the limitations of traditional methods
and built-in integrity features in terms of data transferred safely, reduced bit error rates, as well as overall
system performance improvements [3].

1.1 Research gaps

Even though forward error correction (FEC) codes that exhibit noticeable advantages concerning FEC
performance have been developed for the satellite based global navigation system, there are still a number of
research challenges and issues presented in this paper. One of the major holes is traditional Forward Error
Correction (FEC) techniques like Viterbi and Turbo Codes have non-adaptable properties. These systems are
specified with fixed parameters, so they have low agility to adapt well enough the signal conditions that
characterize GNSS environments (and especially those in urban areas). The standard FEC models are static,
and this makes such lessons difficult to adapt for real-time comparisons in changing environments. This lack
of flexibility renders the system as non-resilient during dynamic content variations and calls for more adaptable
FEC categories that can change instantly [4].

Additionally, machine learning-enhanced FEC systems are again associated with a significant increase in
computational complexity. While these systems provide enhanced error correction, their cost in terms of
greater computational requirements can be an obstacle especially for real-time GNSS applications. This
demand sparks the development of new machine learning models whose efficiency can benefit from
diminishing degrees with regards to error correction while keeping computational overhead as low as possible.
The utilities of hybrid FEC schemes, combining classical coding methods and machine learning techniques
are yet to be fully explored. Such hybrid methods may capture the benefits of each to improve error correction
performance overall [5].

Nevertheless, much of the previous research has been constrained by unrealistic environments and too little
real-world verification. The lack of broader field testing, especially in more complex GNSS environments is
a major need for future work. While the integration of machine learning in FEC coding appears to be very
promising, one needs dedicated optimization concerning GNSS applications. That is a subject of future work
laying out the ground to learn how to adapt certain algorithms (reinforcement learning, deep neural networks)
for increased efficiency on FEC tasks. The reason behind this is energy efficiency which can be often ignored.
However, most FEC systems enhanced by machine learning are not optimized for energy-efficient
communication due to their power-related constraints example in GNSS applications running on mobile
devices or remote sensors. Lastly, with advancements in GNSS technology like new satellite constellations
and improved signal processing techniques, it is yet to be seen how FEC codes enhanced by machine learning
can be integrated into these upcoming technologies. Filling these research gaps is highly important for the
progress of FEC codes in general and, particularly critical for more friendly modern GNSS applications [6].
1.2 Applications

Efficient Forward Error Correction (FEC) codes find wide applications in the context of Global Navigation
Satellite Networks (GNSS), especially as a method to improve satellite-based services reliability and accuracy
[7]. A prime example is the introduction of autonomous navigation systems, in which accurate and reliable
data are paramount to coordinate self-driving cars or drones/UAV. Under these circumstances strong FEC
codes are used to guarantee that the navigation signals make it through interference or signal fading and, as a
result, position-based services can even work in harsh environments. FEC codes are also extremely important
in aviation and maritime navigation where ensuring the sanctity of positioning data is essential for safety as
well as operational efficiency. They are also important for military applications, where secure and dependable
communication is essential to conduct mission-critical operations Using FEC codes for precision agriculture,
where the ability to precisely control position essential as navigation are helpful in making decisions improving
farming practices that will help them grow their efficiency and productivity. Additionally, in the expansion of
GNSS into urban environments and IoT applications, FEC for higher-order modulations become necessary to
facilitate reliable communication first, ensuring that devices can still communicate thank communications are
protected when they inevitably operate within crowded or high- interference voltage. Those applications
illustrate the need for ongoing research and development in FEC technology to meet changing requirements
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due to GNSS advancements.

1.3 Existing system

Figure.1 A Global Navigation Satellite System (GNSS) Components and Interactions The term space segment
refers to the group of satellites orbiting around our Earth and sending signals from which a GNSS receiver
calculates position, velocity and timing. These satellites are the foundation of the GN'SS which in turn provides
accurate global navigation and positioning services. The control segment is made up of a series of ground-
based stations designed to monitor and instruct the satellites, thereby ensuring they are operating as effectively
as possible [8].

This segment includes the Master Control Station, which control and monitor activities of all satellites based
on monitoring data from worldwide stations. Ground Antennae is also in the control segment which used for
communication between satellites and the control stations. User segment: All GNSS receivers (e.g., in
vehicles, aircraft, ships and hand held devices) that receive satellite signals to determine the exact location
where a user is. This portion is crucial for applications spread over a broad range of sectors like navigation,
and timing synchronization. Monitoring stations are also set up on the ground so as to always keep a track of
signals being transmitted by satellites. The role of these stations is to collect data from the satellites and feed
it through to a master control station, where any signal errors can be isolated and corrected or refined based
on an estimate obtained in this way "the monitoring network", leading always updating GNSSs.

These segments together form a sophisticated infrastructure to deliver global navigation services with great
accuracy and certainty, which cater to maritime, aviation acrospace position measurement etc. applications of
various disciplines aid sectors throughout the world. Seamless interaction between the space, control and user
segments assures proper operation of the GNSS to deliver vital positioning and timing information
indispensable in modern world connectivity.
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Figure.1 Overview of Global Navigation Satellite System (GNSS) Components and Operations
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1.4 Overview of Satellite-Based Augmentation System (SBAS)

Figure. 2 shows the operation indicates the Satellite-Based Augmentation System (SBAS) component of a
GNSS signal. Such signals are sent by GNSS satellites to users, including aircrafts, but also to monitor
stations. The monitor stations are responsible for preprocessing the signals to evaluate their quality and
veracity before routing that data over a network link of some form to the Master Station.
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Differential correction is hence computed at the master station to correct any errors (as determined from
detecting differences between repeats), and data integrity verification assures its quality. The aircraft then
beams the corrected data up to a SBAS satellite, which in turn send it down to users for more precise
positioning [9]. Having corrected the information, this is then arranged and uploaded to the SBAS satellite by
a navigation earth station for real-time use.
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Figure.2 Satellite-Based Augmentation System (SBAS) Workflow

2.  Related work

Here in T. Zhang et al [10] introduce a machine-learning- based INS-Aided GNSS pseudo-range error
prediction approach for urban vehicle navigation application. The novel contribution is the use of an ensemble
bagging decision tree learning method for improving horizontal accuracy and reducing urban location errors.
Nevertheless, the performance of such a method is dependent upon training data quality and coverage which
cannot be violated in many general urban areas with equal distribution of measurements accomplished by
diverse individuals.

Q. Zhang et al., [11] "Single-difference tightly coupled GNSS/INS integration based on particle filter with
RANSAC fault detection and exclusion," in IEEE Transactions on Vehicular Technology, vol. Compared to
an integrated approach, this one improves the positioning accuracy by 45% and 42%, in north and east
directions respectively. Even though this method boosts the reliability of detection; it increases computational
burden which could be a bottleneck to for real-time or constrained resource applications.

A Hybrid Neural Network-based Approach for GNSS Outage Compensation using CNN-GRU ModelAuthors:
[12] X. Meng, B The novelty is to couple this mode with an Improved Robust Adaptive Kalman Filter IRAKF)
in order capture the GNSS signal interruptions and improve overall precision. But a lot still hinges on the
quality of predicted GNSS position information, and errors in this prediction can take away from what could
be an improvement to location-system filtering as a whole.

Q. Chenetal., [13] "Comparison and Analysis of Two Coarse Initial Heading Alignment Algorithms for Low-
Cost MEMS INS/GNSS Integration in Land Vehicles," Sensors, vol. This method has the ability to very
rapidly and accurately calculate about an initial heading under different dynamics. However, it may not work
as well with more dynamic motion or complex skill patterns that were outside the scope of this study.

In this paper [14], T. Zhang et al present a new robust and efficient INS-level fusion algorithm (eNav-Fusion)
for IMU array/GNSS data fusion [6]. The proposed method provides computational efficiency, but also
improves in terms of navigation performance and robustness even when not having rigidly installed IMU
arrays. Nevertheless, the efficiency of the algorithm in real-time scenarios with limited processing power could
be challenged and its adaptability to extreme non-rigidity needs to be further investigated.

Y. Li et al proposed the result of a multi-sensor fusion method to survey railway irregularity by integrating
vehicle-based RTK GNSS, MEMS IMU and odometer sensors with laser scanner modules in [15] (refer this
paper for more information about state-of-art). This system can be used to lower the costs of equipment and

137



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 47 No. 01 (2026)

improve abnormality detection on a railway, making it an advanced technology that may have great usefulness
in the railway industry. However, the primary disadvantage of this system is its dependence on low-cost
MEMS inertial measurement units (IMUs), which may provide insufficient performance in more extreme
operating conditions where higher-grade sensors are required.

3. Existing equations

3.1 Equation of Satellite Motion

As for the dynamics of a satellite within GNSS framework, this means how location changes over time while
being gravity-affected by Earth. Groten said this relationship was important for calculating the satellite's orbit
and transmitting signals to be picked up by GNSS receivers. Where this is given by Equation 1

drity _ GMr(n (1)

dr? |r(eyd

where r(t) represents the position vector of the satellite at time t, G is the gravitational constant, and M is the
mass of the Earth [18].

3.2 Signal Transmission Time Calculation

Several factors, such as medium wave has to travel through to reach a GNSS receiver and delays imposed by
the ionosphere and tropospheric component etc. can affect the actual time taken for this signal broadcasted
from satellites until it reaches back on earth surface at these receivers. It is a key relationship in calculating
correct position from GNSS receivers. This can be evaluated from Equation 2

p= Fr ds
e, @
where ty is the transmission time of the signal, rgs is the position of the satellite, 7y is the position of the
receiver, ds is the differential path length, c is the speed of light in a vacuum, vipn(s) is the velocity
perturbation due to ionospheric delay, and virg(s) is the velocity perturbation due to tropospheric delay [19].
33 Matrix Representation of GNSS Error Correction
GNSS error correction is the process of compensating for signal transmission and reception mistakes.
Basically, this equation relies on a matrix form to represent these errors by taking factors into account like
satellite geometry and measurement noise. It can be calculated by Equation 3
E=H-x+n 3
where E is the error vector, H is the design matrix (including parameters like satellite geometry), X
is the state vector (including errors like clock biases), and n is the noise vector [20].
34 Total Signal Strength Received
The total signal strength received at the ground antenna is a summation of several satellite signals. This is
what gets added and this equation shows the weighting from each of these specially essential for any GNSS
receiver to process signals accurately. This — can be calculated by Equation 4

§=XL, wi-S @

where S is the total received signal strength, w; is the weight for the ith satellite signal based on its elevation
angle, S; is the signal strength from the ith satellite, and N is the number of satellites [21].
3.5 Kalman Filter Update Equation

GNSS applications use the Kalman filter to update a receivers estimated position using new measurements.
This expresses the process of updating (involving use of) the predicted state and using a new measurement to
improve an estimate positional representative. It is expressed by Equation. 5

Xklk = Xk|k—1 + Ki(zk — HiXk|k—1) )
where Xk|k is the updated state estimate, Xk|k—1 is the predicted state estimate, Kj is the Kalman gain, zf
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is the measurement vector, and Hj is the observation matrix [22].
3.6 Signal Error Due to Ionospheric Delay

The ionospheric delay is one of the most important source error in GNSS signal propagation. It represents an
equation that calculates the total Delays due to ionosphere, which is necessary for signal timing correction and
positioning with precision. This can be thought of as Equation 6

Aty = [ N(h) - ds

pikal (6)

where Atjon is the ionospheric delay, Ne(h) is the electron density at height 4, Amax is the maximum
ionospheric height, and ds is the differential path length [23][24][25][26].

4. Proposed Method for Enhancing GNSS Data Integrity Using Machine Learning-Enhanced Forward
Error Correction (ML-FEC)

The proposed method is shown in the figure.3. ML-FEC integrates an advanced GNSS data integrity approach.
This method is a fancy adaptation of the classic GNSS architecture infused with advanced machine learning
algorithms to rectify the error and process signals much better. Both users and the ground-based infrastructure,
including reference stations as well as a network control center are continuously receiving signals from GNSS
satellite constellation along with geostationary satellites (GEO). This system also ensures that these satellites
are the basic units of provision for global positioning, navigation and timing Iterated Methodology. Reference
stations are the key to receive signals from satellites and send them on to network control center where early
stages of error detection and correction occur Received signals are processed and corrected by the network
control center. The corrected data is then beamed back to the satellites through a series of ground-uplink
subsystem that ensures location-based signals are received accurately and devoid of flaws. A fundamental
advancement is the inclusion of ML-FEC system, which utilizes convolution neural networks (CNNs) among
other machine learning algorithms to improve existing error correction methods. Overall, the ML-FEC system
consists of several steps that include data preprocessing as well as feature learning and classification stages
which simultaneously work together for dynamically optimizing error correction and enhance overall data
integrity by reducing bit error rates (BER). Feature learning, this stage identifies meaningful structures and
patterns within the data. Data preprocessing: - This is the first step of ideas generation that filters out noise and
irrelevant information. Classification algorithms are used to classify and rectify the signal data. The cloud
infrastructure that supports the ML-FEC system empowers it with essential computational and storage capacity
to manage large volumes of data. This opens up opportunities for integration of the accelerator with cloud and
allows near- real-time updates and scalability, making it capable to adapt to changing transmission conditions.
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Figure. 3. Proposed Method for Machine Learning-Enhanced Forward Error Correction (ML-FEC) in GNSS

In the end, these signals are sent to Final users like cars helps, aircraft and other moving platforms. This
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machine-learning-based forward error correction (ML-FEC) system enhances data integrity and accuracy to
enable applications from the highly accurate positioning services these users require, improving usability in
difficult signal environments. While this approach provides higher accuracy of GNSS, it avoids the
shortcomings of legacy systems paving a unique way towards more robust positioning which is critical for
many applications where high level precision is imperative.

4.1 Proposed Method Equations

4.2 Dynamic Error Correction Model

The learning nature of the error correction model that can modify itself depending on present day transmission
conditions. That change can be modelled as differential equation of the correction applied evolves in time ¢,
denoted E(t)

@ + [ K(1)E(7) dr = ()
dt 0

(7

equation. 7 shows the dynamic version of ECAP K(t) which is a kernel function that changes with respect to
varying conditions and S(t) input signal at time t, its pseudo code form in the pseudocode. 1

Pseudocode 1

Initialize t = 0 Initialize S(t)// Initialize time variable t and input signal S(t)
Define K(1)// Define the kernel function K(t)

Initialize E(t) = 0 // Initialize error correction vector E(t)

While t <= T do: // Iterate over time to update the error correction model
integral_term = Integrate from 0 to t: K(t) * E(1) dt

// Update the error correction vector E(t)

dE(t)/dt = S(t) - integral term // Calculate the integral term

t=t+ At // Update time

End While

43 Signal Correction with Convolutional Neural Network (CNN) Integration

The ML-FEC system augments error correction with Convolutional Neural Networks (CNNs) incorporated
into the traditional FEC path. Output signal O(t) after correction represented in equation. 8 and its pseudo
code is given as pseudocode.2

Oty =C+I(t) + ¥ ¢Ecy o

=1 ! 4

Where, C * I(t) convolute of the CNN filter C with an input signal I(t), and «; is a weight for different error

terms

Pseudocode 2
Initialize I(t) Initialize CNN filter C // Initialize input signal I(t) and convolutional filter C

Define a[i] for i =1 to N // Define the differential error term weights a i
Initialize O(t) = 0 // Initialize output signal O(t)

convolution_term = Convolve(C, I(t)) // Calculate the convolution of CNN filter with input signal

140



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 47 No. 01 (2026)

For i=1 to N do: differential_error_term = a[i] * dE[i](t)/dt
O(t) = convolution_term + differential error_term // Iterate over differential error terms to update output
signal

End For

4.4 Matrix-Based Error Correction.

The error correction process can also be represented using a matrix-based approach, where a 5x5 matrix M is
used to correct errors across multiple channels simultaneously and its pseudocode is represented in
pseudocode.3

Ecorrected =M - Egbserved + N )]

10
My Mz Mgz My Mg (10)
1721 M3z Maz May Mg

M=|m31 Mgz Mgz M3y mssl
My Mgz Myg My Myg

h™Ms1  Migs Mgy Mgy mss)

Where, Ecorrected is the corrected error vector, Egbserved is the observed error vector, and N is the noise

vector. The matrix M represents in equation 10 it is used to correction coefficients that are optimized using
machine learning.

Pseudocode 3

Initialize E_observed, initialize noise vector N // Initialize observed error vector E_observed and noise
vector N
Initialize matrix M // Define the 5x5 correction matrix M

E_corrected = MatrixMultiply(M, E_observed) + N // Perform matrix multiplication to correct errors

4.5 Adaptive Learning Rate Adjustment (Summation)

The ML-FEC system uses the step size 7(t) in an adaptive mode for error correction; where it involves past
errors summation as per equation. 11 and it's pseudocode is represented by pseudocode 4

n(t) =UD+E,'-”=L B; - |E;(£)] (11)

where, 1 is the initial learning rate, §j are the adjustment factors, and Ej(¢) are the past error magnitudes.

Pseudocode 4

Initialize n0// Initialize initial learning rate n0

Define B[j] for j =1 to M, initialize error magnitudes Ej(t) Define adjustment factors Bj and error
magnitudes Ej(t)

1n(t) =10, For j =1 to M do:n(t) =n(t) + B[j] * Ej(t) / Calculate the adaptive learning rate n(t)
End For

4.6 Overall System Performance Metric.

The overall performance of the ML-FEC system is evaluated using an integrated performance metric P that
sums up the system's response over time and and its pseudocode is represented in pseudocode.5
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P=["(ZF vy -0 ()dt (12)
o k=Lkok

Pseudocode 5

Initialize performance weights y[k] for k =1 to K, initialize output signals OKk(t)// Initialize performance

weights Yk and output signals O_Kk(t)
Define observation period T // Define total observation period T

P=0,For k=1 to K do:
P =P + Integrate from 0 to T: y[k] * Ok(t) dt // Calculate the integrated performance metric P

End For

The equation.12 integrates the weighted sum of the output signals Of(t) over time, where yj are the
performance weights, and T is the total observation period. These equations introduce innovative ways to
model and optimize the Machine Learning-Enhanced Forward Error Correction (ML-FEC) system using
advanced mathematical techniques, including integration, differentiation, summation, and matrix operations.
These enhancements contribute to more effective and adaptive error correction in GNSS, ultimately leading
to improved data integrity and system performance.

5.  Results and discussion
Table 1 provides the main simulation parameters which are used to evaluate the performance of ML-FEC
system. These measurements are in relation to error correction, processing time, computational complexity
and system's overall performance. The table is an overall framework for evaluation of testing as described
above to be used in evaluating by the impact achieved on GNSS data integrity after ML-FEC tested under
different conditions.

Table.1 Simulation parameters

SI. No. Parameter Value

1 Error Correction Code | 1/2
Rate
Bit Error Rate (BER) 0.10% - 0.20%

3 Computational 150 - 200 million operations per
Complexity second

4 Processing Time 10 - 15 ms

5 Signal-to-Noise Ratio 8-10dB
(SNR)

6 Learning Rate 0.01 to 0.1 (Adaptive)

7 Error Correction Matrix| 5x5
Size

8 Simulation Duration 1000 Seconds
Energy Consumption 0.8 - 1.2 Joules

10 Performance Metric (P) | 85% - 98%

As shown in Figure 4, a performance comparison of BER under conventional methods such as Viterbi
Decoder, Turbo Code Decode and CNN with the proposed ML-FEC. The proposed method significantly
reduces the method and can decrease BER much more than other methods proposed, which makes them
beneficial for error correction under critical GNSS conditions.

Figure. 5 demonstrates the throughput performance of various error correction techniques. Go Through It as
to How Much Each Way Affects Data Throughout. Some Enhancements with ML-FEC Proposed Method
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Compared with traditional decoding which can be relatively slow, the ML-FEC method speeds up throughput
by increasing data processing rate through faster error correction. As shown in Figure 6, Compared to the
computational load on each error correction method. It shows the computational complexity is saved from this
proposed ML-FEC method compare to classical methods. For GNSS applications this decrease in
computational burden is very important to improve the processing speed and, by extension, reduce power
consumption.
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Figure.4 Bit Error Rate (BER) Performance. Figure.5 Performance throughput

Figure. 7 illustrates an overall performance comparison (BER, throughput and computational load) between
conventional methods with the suggested ML-FEC method. The figure conveys the fact that our proposed
ML-FEC outperforms other traditional methods, achieving a good trade off and optimum solution in improving
GNSS data integrity as well as system performance. Table 2 shows a comparison of the performance metrics
on three conventional error correction approaches (Viterbi Decoder, Turbo Code Decoder and CNN) vs. our
ML-FEC solution. The table demonstrates the gains in BER, data throughput, computational load (with relative
to Turbo decoder performance), Processing time and energy consumption with ML-FEC system. The
comparison illustrates the noteworthy improvements of the proposed method compared to conventional
systems, especially in reducing computational load and ensuring data integrity for GNSS applications. Figure.7
provides an overall comparison of the performance of conventional methods versus the proposed ML-FEC
method across various metrics, including BER, throughput, and computational load. The figure emphasizes
that the proposed ML-FEC method outperforms conventional methods, offering a balanced and optimized
solution for enhancing GNSS data integrity and system performance.
Table.2 overall performance analysis between proposed and conventional methods

Parameter Viterbi Turbo Code Convolutional Neural Proposed Method
Decoder (VD) | Decoder (TCD) Network (CNN) (ML-FEC)

Bit Error Rate 0.10% 0.12% 0.15% 0.20%
(BER) Reduction
Data Throughput 0.05% 0.08% 0.12% 0.15%
(%)
Computational 0.10% 0.15% 0.20% 0.25%
Load (%)
Processing Time 15 ms 12 ms 11 ms 10 ms
(ms)
Energy 127 117 1.07 0.87
Consumption
(Joules)
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6. Conclusion

The Proposed ML-FEC provides considerable improvements in performance and reliability of Global
Navigation Satellite Network. The ML-FEC provides solution to limitations observed in Viterbi Decoder(VD)
and Turbo Code Decoder(TCD) by combining Global Convolutional Neural Network with conventional Error
correction methods. Results show there is upto .20% reduction in Bit Error Rate(BER) from the proposed
system,thereby improving global Navigation Satellite network applications which needs fast processing and
less energy consumption. By offering improved throughput, accuracy and efficiency positions, the proposed
ML-FEC provides improved performance in wide range of applications. Also, the ML-FEC system offers
considerable improvement over existing Convolutional coding systems, offering an improved robust and
adaptable solution for modern GNSS requirements.

6.1 Future Scope

The advancement in ML-FEC open up many avenues for future research and development activities.
One important application area is machine learning model optimization of machine learning models, mainly
in error correction efficiency balance along with complexity in computation. With the evolution of GNSS
technology, integration of ML-FEC with emerging Satellite constellations and improved signal processing
models will provide improved system performance. In addition to this, ML-FEC can be applied to unmanned
vehicles, aviation, IoT systems where its reliability and accuracy parameters are crucial. Performance
improvement of ML-FEC in the GNSS, involves extensive field testing in challenging environment and to fine
tune the algorithms for wider deployment of the system across various sectors.
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