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1. Introduction 

Global Navigation Satellite Networks (GNSS) are key infrastructure services, which offer positioning and 

timing functions used in a wide range of applications from civilian to military. Ensuring the integrity of data 

transmission between GNSS is crucial as even a small error can create large discrepancies in navigation and 

positioning. Voice networks use error correction techniques, like Viterbi Decoder (VD) and Turbo Code 

Decoder (TCD), that are example of Convolutional Coding Systems (CCS) in order to reduce transmission 

errors, improve data integrity [1] [2]. 

However, there are significant drawbacks with these conventional systems particularly in high bit error rate 

(BER) and varying signal conditions. Obviously, the nature of them being fixed limits how well they can adapt 

in an urban or otherwise difficult environment with lots of signal interference. In addition to this, these systems 

have high computational complexity that requires longer processing time and hence are not efficient for real-

time applications. 

The mounting challenges have led to the adoption of machine learning techniques in GNSS technology lately. 

One promising research direction involves machine learning models like Convolutional Neural Networks 
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(CNN) to tackle this task, which can adapt the capacity of error correction dynamically due to diverse 

transmission conditions. These new capabilities will help to overcome the limitations of traditional methods 

and built-in integrity features in terms of data transferred safely, reduced bit error rates, as well as overall 

system performance improvements [3]. 

1.1 Research gaps 

Even though forward error correction (FEC) codes that exhibit noticeable advantages concerning FEC 

performance have been developed for the satellite based global navigation system, there are still a number of 

research challenges and issues presented in this paper. One of the major holes is traditional Forward Error 

Correction (FEC) techniques like Viterbi and Turbo Codes have non-adaptable properties. These systems are 

specified with fixed parameters, so they have low agility to adapt well enough the signal conditions that 

characterize GNSS environments (and especially those in urban areas). The standard FEC models are static, 

and this makes such lessons difficult to adapt for real-time comparisons in changing environments. This lack 

of flexibility renders the system as non-resilient during dynamic content variations and calls for more adaptable 

FEC categories that can change instantly [4]. 

Additionally, machine learning-enhanced FEC systems are again associated with a significant increase in 

computational complexity. While these systems provide enhanced error correction, their cost in terms of 

greater computational requirements can be an obstacle especially for real-time GNSS applications. This 

demand sparks the development of new machine learning models whose efficiency can benefit from 

diminishing degrees with regards to error correction while keeping computational overhead as low as possible. 

The utilities of hybrid FEC schemes, combining classical coding methods and machine learning techniques 

are yet to be fully explored. Such hybrid methods may capture the benefits of each to improve error correction 

performance overall [5]. 

Nevertheless, much of the previous research has been constrained by unrealistic environments and too little 

real-world verification. The lack of broader field testing, especially in more complex GNSS environments is 

a major need for future work. While the integration of machine learning in FEC coding appears to be very 

promising, one needs dedicated optimization concerning GNSS applications. That is a subject of future work 

laying out the ground to learn how to adapt certain algorithms (reinforcement learning, deep neural networks) 

for increased efficiency on FEC tasks. The reason behind this is energy efficiency which can be often ignored. 

However, most FEC systems enhanced by machine learning are not optimized for energy-efficient 

communication due to their power-related constraints example in GNSS applications running on mobile 

devices or remote sensors. Lastly, with advancements in GNSS technology like new satellite constellations 

and improved signal processing techniques, it is yet to be seen how FEC codes enhanced by machine learning 

can be integrated into these upcoming technologies. Filling these research gaps is highly important for the 

progress of FEC codes in general and, particularly critical for more friendly modern GNSS applications [6]. 

1.2 Applications 

Efficient Forward Error Correction (FEC) codes find wide applications in the context of Global Navigation 

Satellite Networks (GNSS), especially as a method to improve satellite-based services reliability and accuracy 

[7]. A prime example is the introduction of autonomous navigation systems, in which accurate and reliable 

data are paramount to coordinate self-driving cars or drones/UAV. Under these circumstances strong FEC 

codes are used to guarantee that the navigation signals make it through interference or signal fading and, as a 

result, position-based services can even work in harsh environments. FEC codes are also extremely important 

in aviation and maritime navigation where ensuring the sanctity of positioning data is essential for safety as 

well as operational efficiency. They are also important for military applications, where secure and dependable 

communication is essential to conduct mission-critical operations Using FEC codes for precision agriculture, 

where the ability to precisely control position essential as navigation are helpful in making decisions improving 

farming practices that will help them grow their efficiency and productivity. Additionally, in the expansion of 

GNSS into urban environments and IoT applications, FEC for higher-order modulations become necessary to 

facilitate reliable communication first, ensuring that devices can still communicate thank communications are 

protected when they inevitably operate within crowded or high- interference voltage. Those applications 

illustrate the need for ongoing research and development in FEC technology to meet changing requirements 
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due to GNSS advancements. 

1.3 Existing system 

Figure.1 A Global Navigation Satellite System (GNSS) Components and Interactions The term space segment 

refers to the group of satellites orbiting around our Earth and sending signals from which a GNSS receiver 

calculates position, velocity and timing. These satellites are the foundation of the GNSS which in turn provides 

accurate global navigation and positioning services. The control segment is made up of a series of ground-

based stations designed to monitor and instruct the satellites, thereby ensuring they are operating as effectively 

as possible [8]. 

This segment includes the Master Control Station, which control and monitor activities of all satellites based 

on monitoring data from worldwide stations. Ground Antennae is also in the control segment which used for 

communication between satellites and the control stations. User segment: All GNSS receivers (e.g., in 

vehicles, aircraft, ships and hand held devices) that receive satellite signals to determine the exact location 

where a user is. This portion is crucial for applications spread over a broad range of sectors like navigation, 

and timing synchronization. Monitoring stations are also set up on the ground so as to always keep a track of 

signals being transmitted by satellites. The role of these stations is to collect data from the satellites and feed 

it through to a master control station, where any signal errors can be isolated and corrected or refined based 

on an estimate obtained in this way "the monitoring network", leading always updating GNSSs. 

These segments together form a sophisticated infrastructure to deliver global navigation services with great 

accuracy and certainty, which cater to maritime, aviation aerospace position measurement etc. applications of 

various disciplines aid sectors throughout the world. Seamless interaction between the space, control and user 

segments assures proper operation of the GNSS to deliver vital positioning and timing information 

indispensable in modern world connectivity. 

 

Figure.1 Overview of Global Navigation Satellite System (GNSS) Components and Operations 

1.4 Overview of Satellite-Based Augmentation System (SBAS) 

Figure. 2 shows the operation indicates the Satellite-Based Augmentation System (SBAS) component of a 

GNSS signal. Such signals are sent by GNSS satellites to users, including aircrafts, but also to monitor 

stations. The monitor stations are responsible for preprocessing the signals to evaluate their quality and 

veracity before routing that data over a network link of some form to the Master Station. 
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Differential correction is hence computed at the master station to correct any errors (as determined from 

detecting differences between repeats), and data integrity verification assures its quality. The aircraft then 

beams the corrected data up to a SBAS satellite, which in turn send it down to users for more precise 

positioning [9]. Having corrected the information, this is then arranged and uploaded to the SBAS satellite by 

a navigation earth station for real-time use. 

 

 

 

 

 

 

 

Figure.2 Satellite-Based Augmentation System (SBAS) Workflow 

2. Related work 

Here in T. Zhang et al [10] introduce a machine-learning- based INS-Aided GNSS pseudo-range error 

prediction approach for urban vehicle navigation application. The novel contribution is the use of an ensemble 

bagging decision tree learning method for improving horizontal accuracy and reducing urban location errors. 

Nevertheless, the performance of such a method is dependent upon training data quality and coverage which 

cannot be violated in many general urban areas with equal distribution of measurements accomplished by 

diverse individuals. 

Q. Zhang et al., [11] "Single-difference tightly coupled GNSS/INS integration based on particle filter with 

RANSAC fault detection and exclusion," in IEEE Transactions on Vehicular Technology, vol. Compared to 

an integrated approach, this one improves the positioning accuracy by 45% and 42%, in north and east 

directions respectively. Even though this method boosts the reliability of detection; it increases computational 

burden which could be a bottleneck to for real-time or constrained resource applications. 

A Hybrid Neural Network-based Approach for GNSS Outage Compensation using CNN-GRU ModelAuthors: 

[12] X. Meng, B The novelty is to couple this mode with an Improved Robust Adaptive Kalman Filter (IRAKF) 

in order capture the GNSS signal interruptions and improve overall precision. But a lot still hinges on the 

quality of predicted GNSS position information, and errors in this prediction can take away from what could 

be an improvement to location-system filtering as a whole. 

Q. Chen et al., [13] "Comparison and Analysis of Two Coarse Initial Heading Alignment Algorithms for Low-

Cost MEMS INS/GNSS Integration in Land Vehicles," Sensors, vol. This method has the ability to very 

rapidly and accurately calculate about an initial heading under different dynamics. However, it may not work 

as well with more dynamic motion or complex skill patterns that were outside the scope of this study. 

In this paper [14], T. Zhang et al present a new robust and efficient INS-level fusion algorithm (eNav-Fusion) 

for IMU array/GNSS data fusion [6]. The proposed method provides computational efficiency, but also 

improves in terms of navigation performance and robustness even when not having rigidly installed IMU 

arrays. Nevertheless, the efficiency of the algorithm in real-time scenarios with limited processing power could 

be challenged and its adaptability to extreme non-rigidity needs to be further investigated. 

Y. Li et al proposed the result of a multi-sensor fusion method to survey railway irregularity by integrating 

vehicle-based RTK GNSS, MEMS IMU and odometer sensors with laser scanner modules in [15] (refer this 

paper for more information about state-of-art). This system can be used to lower the costs of equipment and 
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improve abnormality detection on a railway, making it an advanced technology that may have great usefulness 

in the railway industry. However, the primary disadvantage of this system is its dependence on low-cost 

MEMS inertial measurement units (IMUs), which may provide insufficient performance in more extreme 

operating conditions where higher-grade sensors are required. 

 

3. Existing equations 

3.1 Equation of Satellite Motion 

As for the dynamics of a satellite within GNSS framework, this means how location changes over time while 

being gravity-affected by Earth. Groten said this relationship was important for calculating the satellite's orbit 

and transmitting signals to be picked up by GNSS receivers. Where this is given by Equation 1 

                                                                                                                      (1) 

 

 

where 𝑟(𝑡) represents the position vector of the satellite at time 𝑡, 𝐺 is the gravitational constant, and 𝑀 is the 

mass of the Earth [18]. 

3.2 Signal Transmission Time Calculation 

Several factors, such as medium wave has to travel through to reach a GNSS receiver and delays imposed by 

the ionosphere and tropospheric component etc. can affect the actual time taken for this signal broadcasted 

from satellites until it reaches back on earth surface at these receivers. It is a key relationship in calculating 

correct position from GNSS receivers. This can be evaluated from Equation 2 

                                                                       

                                                                                                    (2) 

 

where 𝑡𝑟 is the transmission time of the signal, 𝑟𝑠 is the position of the satellite, 𝑟𝑟 is the position of the 

receiver, 𝑑𝑠 is the differential path length, 𝑐 is the speed of light in a vacuum, 𝑣ion(𝑠) is the velocity 

perturbation due to ionospheric delay, and 𝑣tro(𝑠) is the velocity perturbation due to tropospheric delay [19]. 

3.3 Matrix Representation of GNSS Error Correction 

GNSS error correction is the process of compensating for signal transmission and reception mistakes. 

Basically, this equation relies on a matrix form to represent these errors by taking factors into account like 

satellite geometry and measurement noise. It can be calculated by Equation 3 

𝐄 = 𝐇 ⋅ 𝐱 + 𝐧 (3) 

where 𝐄 is the error vector, 𝐇 is the design matrix (including parameters like satellite geometry), 𝐱 

is the state vector (including errors like clock biases), and 𝐧 is the noise vector [20]. 

3.4 Total Signal Strength Received 

The total signal strength received at the ground antenna is a summation of several satellite signals. This is 

what gets added and this equation shows the weighting from each of these specially essential for any GNSS 

receiver to process signals accurately. This — can be calculated by Equation 4 

                                                                                                            (4) 

 

where 𝑆 is the total received signal strength, 𝑤𝑖 is the weight for the 𝑖th satellite signal based on its elevation 

angle, 𝑆𝑖 is the signal strength from the 𝑖th satellite, and 𝑁 is the number of satellites [21]. 

3.5 Kalman Filter Update Equation 

GNSS applications use the Kalman filter to update a receivers estimated position using new measurements. 

This expresses the process of updating (involving use of) the predicted state and using a new measurement to 

improve an estimate positional representative. It is expressed by Equation. 5 

𝐱𝑘|𝑘 = 𝐱𝑘|𝑘−1 + 𝐊𝑘(𝐳𝑘 − 𝐇𝑘𝐱𝑘|𝑘−1) (5) 

where 𝐱𝑘|𝑘 is the updated state estimate, 𝐱𝑘|𝑘−1 is the predicted state estimate, 𝐊𝑘 is the Kalman gain, 𝐳𝑘 
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is the measurement vector, and 𝐇𝑘 is the observation matrix [22]. 

3.6 Signal Error Due to Ionospheric Delay 

The ionospheric delay is one of the most important source error in GNSS signal propagation. It represents an 

equation that calculates the total Delays due to ionosphere, which is necessary for signal timing correction and 

positioning with precision. This can be thought of as Equation 6 

                                                                                              

                                                                                                       (6) 

where Δ𝑡ion is the ionospheric delay, 𝑁𝑒(ℎ) is the electron density at height ℎ, ℎmax is the maximum 

ionospheric height, and 𝑑𝑠 is the differential path length [23][24][25][26].       

                  

4. Proposed Method for Enhancing GNSS Data Integrity Using Machine Learning-Enhanced Forward 

Error Correction (ML-FEC) 

The proposed method is shown in the figure.3. ML-FEC integrates an advanced GNSS data integrity approach. 

This method is a fancy adaptation of the classic GNSS architecture infused with advanced machine learning 

algorithms to rectify the error and process signals much better. Both users and the ground-based infrastructure, 

including reference stations as well as a network control center are continuously receiving signals from GNSS 

satellite constellation along with geostationary satellites (GEO). This system also ensures that these satellites 

are the basic units of provision for global positioning, navigation and timing Iterated Methodology. Reference 

stations are the key to receive signals from satellites and send them on to network control center where early 

stages of error detection and correction occur Received signals are processed and corrected by the network 

control center. The corrected data is then beamed back to the satellites through a series of ground-uplink 

subsystem that ensures location-based signals are received accurately and devoid of flaws. A fundamental 

advancement is the inclusion of ML-FEC system, which utilizes convolution neural networks (CNNs) among 

other machine learning algorithms to improve existing error correction methods. Overall, the ML-FEC system 

consists of several steps that include data preprocessing as well as feature learning and classification stages 

which simultaneously work together for dynamically optimizing error correction and enhance overall data 

integrity by reducing bit error rates (BER). Feature learning, this stage identifies meaningful structures and 

patterns within the data. Data preprocessing: - This is the first step of ideas generation that filters out noise and 

irrelevant information. Classification algorithms are used to classify and rectify the signal data. The cloud 

infrastructure that supports the ML-FEC system empowers it with essential computational and storage capacity 

to manage large volumes of data. This opens up opportunities for integration of the accelerator with cloud and 

allows near- real-time updates and scalability, making it capable to adapt to changing transmission conditions. 

 

Figure. 3. Proposed Method for Machine Learning-Enhanced Forward Error Correction (ML-FEC) in GNSS 

 

In the end, these signals are sent to Final users like cars helps, aircraft and other moving platforms. This 
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machine-learning-based forward error correction (ML-FEC) system enhances data integrity and accuracy to 

enable applications from the highly accurate positioning services these users require, improving usability in 

difficult signal environments. While this approach provides higher accuracy of GNSS, it avoids the 

shortcomings of legacy systems paving a unique way towards more robust positioning which is critical for 

many applications where high level precision is imperative. 

4.1 Proposed Method Equations 

4.2 Dynamic Error Correction Model 

The learning nature of the error correction model that can modify itself depending on present day transmission 

conditions. That change can be modelled as differential equation of the correction applied evolves in time 𝑡, 

denoted 𝐄(𝑡) 

 

                                                                                                                 (7) 

equation. 7 shows the dynamic version of ECAP 𝐊(𝜏) which is a kernel function that changes with respect to 

varying conditions and 𝐒(𝑡) input signal at time 𝑡, its pseudo code form in the pseudocode. 1 

Pseudocode_1 

Initialize t = 0 Initialize S(t)// Initialize time variable t and input signal S(t) 

Define K(τ)// Define the kernel function K(τ) 

Initialize E(t) = 0 // Initialize error correction vector E(t) 

While t <= T do: // Iterate over time to update the error correction model 

integral_term = Integrate from 0 to t: K(τ) * E(τ) dτ 

// Update the error correction vector E(t) 

dE(t)/dt = S(t) - integral_term // Calculate the integral term 

t = t + Δt // Update time 

End While 

4.3 Signal Correction with Convolutional Neural Network (CNN) Integration 

The ML-FEC system augments error correction with Convolutional Neural Networks (CNNs) incorporated 

into the traditional FEC path. Output signal 𝐎(𝑡) after correction represented in equation. 8 and its pseudo 

code is given as pseudocode.2 

                                                                               (8) 

 

Where, 𝐂 ∗ 𝐈(𝑡) convolute of the CNN filter 𝐂 with an input signal 𝐈(𝑡), and 𝛼𝑖 is a weight for different error 

terms 

Pseudocode_2 

Initialize I(t) Initialize CNN filter C // Initialize input signal I(t) and convolutional filter C 

Define α[i] for i = 1 to N // Define the differential error term weights α_i 

Initialize O(t) = 0 // Initialize output signal O(t) 

convolution_term = Convolve(C, I(t)) // Calculate the convolution of CNN filter with input signal 
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For i = 1 to N do: differential_error_term = α[i] * dE[i](t)/dt 

O(t) = convolution_term + differential_error_term // Iterate over differential error terms to update output 

signal 

End For 

4.4 Matrix-Based Error Correction. 

The error correction process can also be represented using a matrix-based approach, where a 5x5 matrix 𝐌 is 

used to correct errors across multiple channels simultaneously and its pseudocode is represented in 

pseudocode.3 

𝐄corrected = 𝐌 ⋅ 𝐄observed + 𝐍 (9) 

                                                                                 (10) 

 

 

 

Where, 𝐄corrected is the corrected error vector, 𝐄observed is the observed error vector, and 𝐍 is the noise 

vector. The matrix 𝐌 represents in equation 10 it is used to correction coefficients that are optimized using 

machine learning. 

   Pseudocode_3 

Initialize E_observed, initialize noise vector N // Initialize observed error vector E_observed and noise 

vector N 

Initialize matrix M // Define the 5x5 correction matrix M 

E_corrected = MatrixMultiply(M, E_observed) + N // Perform matrix multiplication to correct errors 

4.5 Adaptive Learning Rate Adjustment (Summation) 

The ML-FEC system uses the step size 𝜂(𝑡) in an adaptive mode for error correction; where it involves past 

errors summation as per equation. 11 and it's pseudocode is represented by pseudocode 4 

 

                                                                                                    (11) 

where, 𝜂0 is the initial learning rate, 𝛽𝑗 are the adjustment factors, and 𝐄𝑗(𝑡) are the past error magnitudes. 

   Pseudocode_4 

Initialize η0// Initialize initial learning rate η0 

Define β[j] for j = 1 to M, initialize error magnitudes Ej(t) Define adjustment factors βj and error 

magnitudes Ej(t) 

η(t) = η0, For j = 1 to M do:η(t) = η(t) + β[j] * Ej(t) // Calculate the adaptive learning rate η(t) 

End For 

4.6 Overall System Performance Metric. 

The overall performance of the ML-FEC system is evaluated using an integrated performance metric 𝒫 that 

sums up the system's response over time and and its pseudocode is represented in pseudocode.5 
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                                                                                  (12) 

 

   Pseudocode_5 

Initialize performance weights γ[k] for k = 1 to K, initialize output signals Ok(t)// Initialize performance 

weights γk and output signals O_k(t) 

Define observation period T // Define total observation period T 

P = 0, For k = 1 to K do: 

P = P + Integrate from 0 to T: γ[k] * Ok(t) dt // Calculate the integrated performance metric P 

End For 

The equation.12 integrates the weighted sum of the output signals 𝐎𝑘(𝑡) over time, where 𝛾𝑘 are the 

performance weights, and 𝑇 is the total observation period. These equations introduce innovative ways to 

model and optimize the Machine Learning-Enhanced Forward Error Correction (ML-FEC) system using 

advanced mathematical techniques, including integration, differentiation, summation, and matrix operations. 

These enhancements contribute to more effective and adaptive error correction in GNSS, ultimately leading 

to improved data integrity and system performance. 

 

5. Results and discussion 

Table 1 provides the main simulation parameters which are used to evaluate the performance of ML-FEC 

system. These measurements are in relation to error correction, processing time, computational complexity 

and system's overall performance. The table is an overall framework for evaluation of testing as described 

above to be used in evaluating by the impact achieved on GNSS data integrity after ML-FEC tested under 

different conditions. 

Table.1 Simulation parameters 

SI. No. Parameter Value 

1 Error Correction Code 

Rate 

1/2 

2 Bit Error Rate (BER) 0.10% - 0.20% 

3 Computational 

Complexity 

150 - 200 million operations per 

second 

4 Processing Time 10 - 15 ms 

5 Signal-to-Noise Ratio 

(SNR) 

8 - 10 dB 

6 Learning Rate 0.01 to 0.1 (Adaptive) 

7 Error Correction Matrix 

Size 

5x5 

8 Simulation Duration 1000 Seconds 

9 Energy Consumption 0.8 - 1.2 Joules 

10 Performance Metric (P) 85% - 98% 

As shown in Figure 4, a performance comparison of BER under conventional methods such as Viterbi 

Decoder, Turbo Code Decode and CNN with the proposed ML-FEC. The proposed method significantly 

reduces the method and can decrease BER much more than other methods proposed, which makes them 

beneficial for error correction under critical GNSS conditions. 

Figure. 5 demonstrates the throughput performance of various error correction techniques. Go Through It as 

to How Much Each Way Affects Data Throughout. Some Enhancements with ML-FEC Proposed Method 
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Compared with traditional decoding which can be relatively slow, the ML-FEC method speeds up throughput 

by increasing data processing rate through faster error correction. As shown in Figure 6, Compared to the 

computational load on each error correction method. It shows the computational complexity is saved from this 

proposed ML-FEC method compare to classical methods. For GNSS applications this decrease in 

computational burden is very important to improve the processing speed and, by extension, reduce power 

consumption. 

 

Figure.4 Bit Error Rate (BER) Performance. Figure.5 Performance throughput 

Figure. 7 illustrates an overall performance comparison (BER, throughput and computational load) between 

conventional methods with the suggested ML-FEC method. The figure conveys the fact that our proposed 

ML-FEC outperforms other traditional methods, achieving a good trade off and optimum solution in improving 

GNSS data integrity as well as system performance. Table 2 shows a comparison of the performance metrics 

on three conventional error correction approaches (Viterbi Decoder, Turbo Code Decoder and CNN) vs. our 

ML-FEC solution. The table demonstrates the gains in BER, data throughput, computational load (with relative 

to Turbo decoder performance), Processing time and energy consumption with ML-FEC system. The 

comparison illustrates the noteworthy improvements of the proposed method compared to conventional 

systems, especially in reducing computational load and ensuring data integrity for GNSS applications. Figure.7 

provides an overall comparison of the performance of conventional methods versus the proposed ML-FEC 

method across various metrics, including BER, throughput, and computational load. The figure emphasizes 

that the proposed ML-FEC method outperforms conventional methods, offering a balanced and optimized 

solution for enhancing GNSS data integrity and system performance. 

Table.2 overall performance analysis between proposed and conventional methods 

Parameter 
Viterbi 

Decoder (VD) 

Turbo Code 

Decoder (TCD) 

Convolutional Neural 

Network (CNN) 

Proposed Method 

(ML-FEC) 

Bit Error Rate 

(BER) Reduction 
0.10% 0.12% 0.15% 0.20% 

Data Throughput 

(%) 

0.05% 0.08% 0.12% 0.15% 

Computational 

Load (%) 
0.10% 0.15% 0.20% 0.25% 

Processing Time 

(ms) 

15 ms 12 ms 11 ms 10 ms 

Energy 

Consumption 

(Joules) 

1.2 J 1.1 J 1.0 J 0.8 J 
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Figure.6 Performance computational load           Figure.7. Overall System Performance Comparison 

 

6. Conclusion 

The Proposed ML-FEC provides considerable improvements in performance and reliability of Global 

Navigation Satellite Network. The ML-FEC provides solution to limitations observed in Viterbi Decoder(VD) 

and Turbo Code Decoder(TCD) by combining Global Convolutional Neural Network with conventional Error 

correction methods. Results show there is upto .20% reduction in Bit Error Rate(BER) from the proposed 

system,thereby improving global Navigation Satellite network applications which needs fast processing and 

less energy consumption. By offering improved throughput, accuracy and efficiency positions, the proposed 

ML-FEC provides improved performance in wide range of applications. Also, the ML-FEC system offers 

considerable improvement over existing Convolutional coding systems, offering an improved robust and 

adaptable solution for modern GNSS requirements. 

 

6.1 Future Scope 

The advancement in ML-FEC open up many avenues for future research and development activities. 

One important application area is machine learning model optimization of machine learning models, mainly 

in error correction efficiency balance along with complexity in computation. With the evolution of GNSS 

technology, integration of ML-FEC with emerging Satellite constellations and improved signal processing 

models will provide improved system performance. In addition to this, ML-FEC can be applied to unmanned 

vehicles, aviation, IoT systems where its reliability and accuracy parameters are crucial. Performance 

improvement of ML-FEC in the GNSS, involves extensive field testing in challenging environment and to fine 

tune the algorithms for wider deployment of the system across various sectors. 
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