

Comparison of Advanced MPPT Techniques & Introduction of Incremental Conductance MPPT Controller Based on Adaptive Neuro Fuzzy Inference Systems (ANFIS) for PV system

1st Ganesh G. Mhatre,

Ph.D. Research Scholar, Department of Electrical Engineering,

RKDF IST, SRK University, Bhopal, M.P., India,

E-mail – ganeshmha@gmail.com

2nd Dr. E. Vijaykumar

Professor & HOD, Department of Electrical Engineering,

RKDF IST, SRK University, Bhopal, M.P., India,

E-mail – drvijaykumareda03@gmail.com

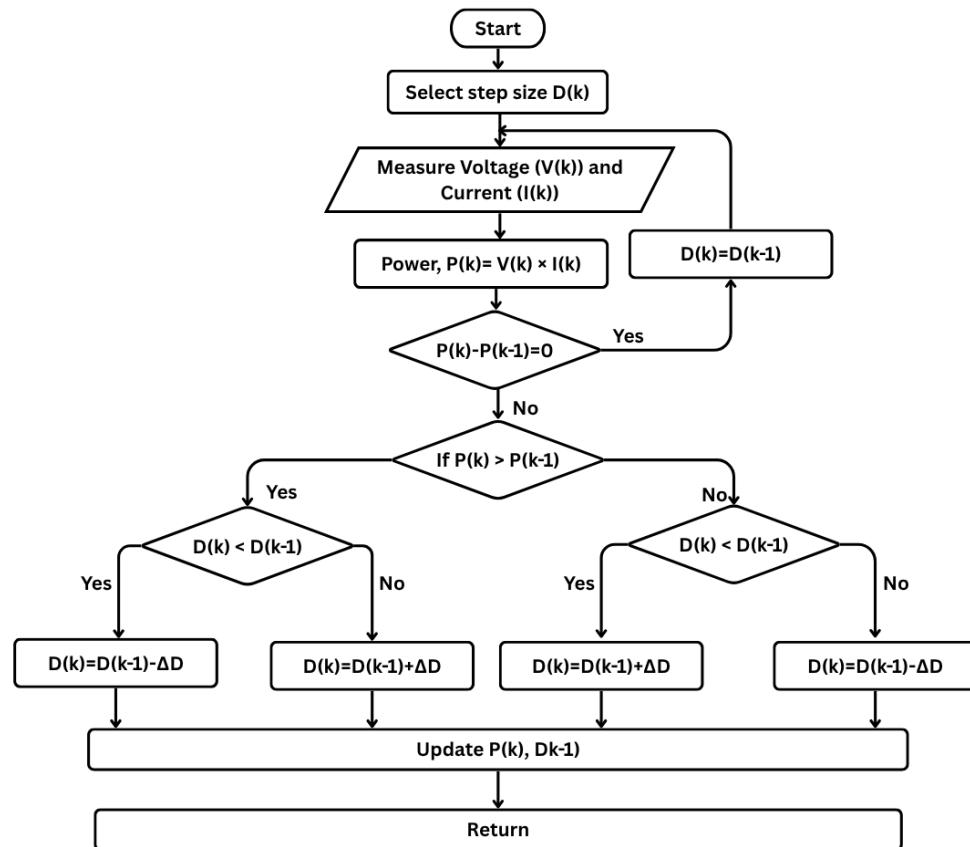
Abstract : Efficient usage of renewable energy systems like photovoltaic (PV) and wind energy systems greatly benefit from Maximum Power Point Tracking (MPPT) techniques. The primary objectives of these advanced MPPT algorithms are addressing slow response times, inefficiency in partial shading, and other issues such as undulated behavior around the Maximum Power Point (MPP). This paper provides a comparative analysis of various advanced MPPT techniques, namely P&O with adaptive step size, fuzzy logic based Incremental Conductance (INC), Artificial Neural Networks (AAN), Particle Swarm Optimization (PSO), Genetic Algorithms (GA), and Sliding Mode Control (SMC) techniques. Key metrics considered for evaluating the techniques included tracking speed, overall efficiency, the complexity of the algorithms, and performance under varying conditions. The study showed that higher utilization of fuzzy logic in conjunction with hybrid integrated intelligent control mechanisms was more effective. The proposed method will demonstrate that the strategy performs noticeably better than conventional techniques in terms of responsiveness, stability, and efficiency.

Keywords: photovoltaic (PV), MPPT, Incremental Conductance (INC), fuzzy logic based Incremental Conductance (INC), Artificial Neural Networks (AAN), Particle Swarm Optimization (PSO), Genetic Algorithms (GA), and Sliding Mode Control (SMC), ANFIS

1. Introduction

Renewable energy sources, particularly in the domain of solar and wind resources, require efficient MPPT techniques to maximize energy extraction. Conventional P&O and INC MPPT techniques face challenges under dynamic weather conditions. Therefore, advanced MPPT techniques have been proposed incorporating intelligent algorithms and

optimization strategies. This paper highlights a comparative study of such techniques based on their advantages, limitations, and practical applications.


2. Advanced MPPT Techniques

2.1 Perturb and Observe (P&O) with Adaptive Step Size [8]

For maximum power point tracking in solar energy systems, the Perturb and Observe method with Adaptive Step Size performs comparably better than the traditional P&O algorithm. The primary objective of this modification is to drastically reduce dc oscillation under steady-state settings while offering a dynamic perturbation step size for faster convergence.

Algorithm

1. Start
2. Measure Voltage (V) and Current (I)
3. Calculate Power, $P = V \times I$
4. Compare current power, $P(k)$ with previous power, $P(k-1)$:
 - o If $P(k) > P(k-1)$, continue in the same direction and increase/decrease step size adaptively
 - o If $P(k) < P(k-1)$, reverse the perturbation direction and reduce step size
5. Update voltage, $V(k-1) = V(k)$ and power $P(k-1) = P(k)$
6. Repeat until Maximum Power Point (MPP) is reached

Flowchart:

Fig.1: Perturb and Observe (P&O) with Adaptive Step Size Flow chart

2.2 Incremental Conductance (INC) with Fuzzy Logic [12,13,19,29,30]

Incremental Conductance (INC) is an advanced Maximum Power Point Tracking technique and is characterized by disadvantages of Perturb and Observe (P&O) in explicitly identifying the MPP without steady state oscillations. Fuzzy Logic Control enhances INC technique having the feasibility of changing the step based on the system conditions. Hence, it can improve the performance, both in rapidity and efficiency.

Algorithm

1. Start
2. Measure Voltage (V) and Current (I)
3. Find out Change in Voltage (ΔV) and Change in Current (ΔI)
4. Calculate Incremental Conductance ($\Delta I/\Delta V$)
5. Compare Incremental Conductance ($\Delta I/\Delta V$) with Conductance (I/V):
 - o If $\Delta I/\Delta V = -I/V$, the Maximum Power Point (MPP) is reached → Maintain current voltage.
 - o If $\Delta I/\Delta V > -I/V$, increase voltage.
 - o If $\Delta I/\Delta V < -I/V$, decrease voltage.
6. Apply Fuzzy Logic Controller (FLC) to adjust step size dynamically based on system conditions.
7. Update previous values ($V_{k-1} = V_k$, $I_{k-1} = I_k$)
8. Repeat until MPP is reached.

Flowchart:

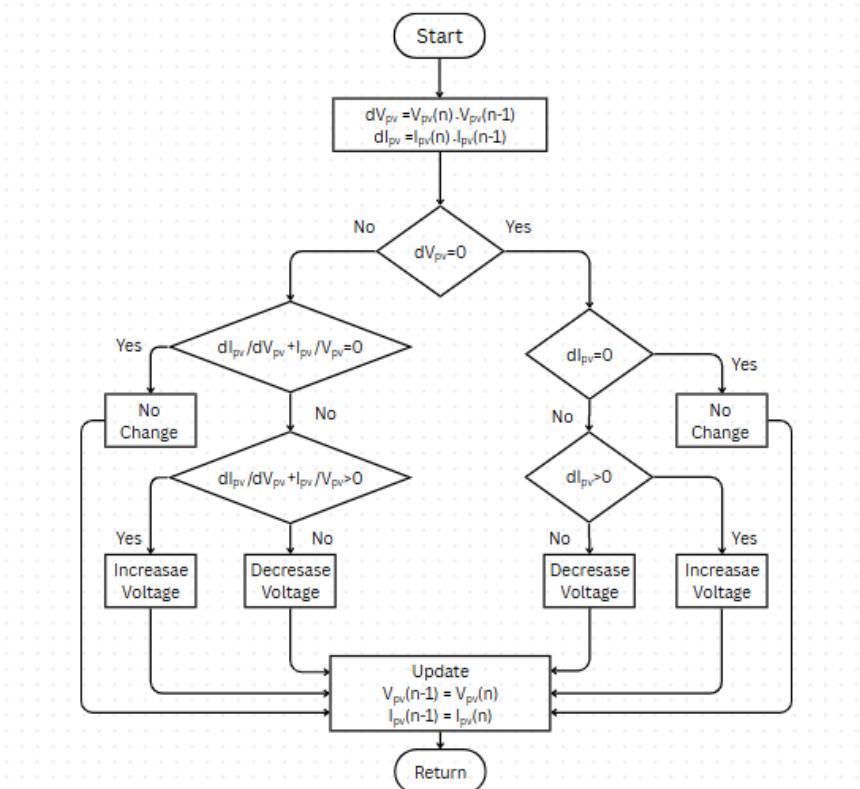


Fig.2: Incremental Conductance (INC) with Fuzzy Logic Flow chart

2.3 Artificial Neural Network (ANN)-Based MPPT [20,22,26]

Artificial Neural Networks (ANNs) provide a highly intelligent and powerful approach that may be used to Maximum Power Point Tracking (MPPT) on Photovoltaic (PV) systems. While conventional approaches such as the P&O and INC may fail to track the optimal operating point during sudden fluctuations in irradiance or temperature, established ANN-based MPPT are capable of doing so.

Algorithm

1. **Start**
2. **Measure Input Parameters (Voltage, Current, Temperature, Irradiance, etc.)**
3. Preprocess the data (Normalization & Feature Scaling)
4. Feed the input parameters into the **Trained ANN Model**
5. **ANN Predicts the Optimal Duty Cycle or Reference Voltage**
6. Apply the predicted value to the **DC-DC Converter** (e.g., Boost Converter)
7. Measure the new **Power Output ($P = V \times I$)**
8. Check for **Convergence to MPP**:
 - o If **MPP is reached**, maintain current operation.
 - o If **MPP is not reached**, update weights (if online learning is enabled) and adjust control parameters.
9. Repeat the process continuously for real-time tracking.

Flowchart:

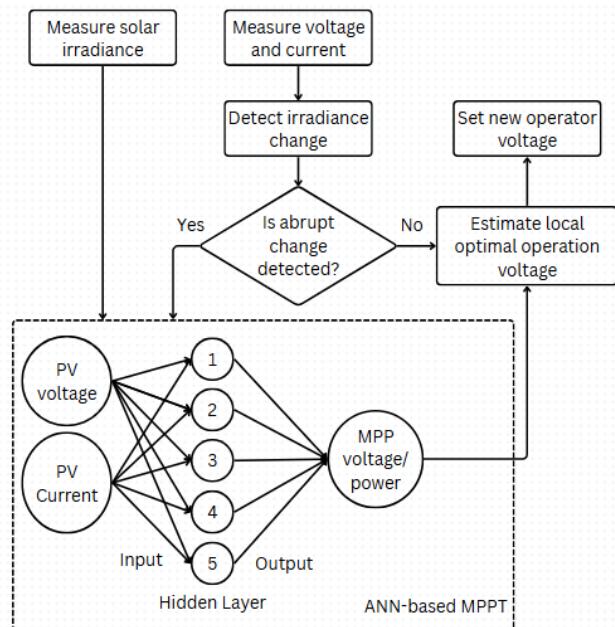


Fig.3: Artificial Neural Network (ANN)-Based MPPT Flowchart

2.4 Particle Swarm Optimization (PSO)-Based MPPT [25]

Particle Swarm Optimization (PSO) is a smart, metaheuristic technique that takes inspiration from how birds or fish groups move together. It is commonly used for Maximum Power Point Tracking (MPPT) in photovoltaic (PV) systems, particularly in tough situations like partial shading and quick changes in sunlight. PSO improves the duty cycle of a DC-DC converter (such as a boost converter) so that the PV system works at the Global Maximum Power Point rather than local maxima where it often gets trapped—a problem for many traditional MPPT techniques.

Algorithm

1. **Start**
2. Initialize **Particles** (each representing a potential duty cycle or voltage)
3. Measure **Voltage (V)** and **Current (I)** from **PV Panel**
4. Calculate **Power ($P = V \times I$) for Each Particle**
5. Update **Personal Best (P_{best}) and Global Best (G_{best}) Values**
6. Adjust **Velocity and Position** of Particles Using PSO Equations
7. Update **Duty Cycle or Reference Voltage**
8. Apply the Updated Value to the **DC-DC Converter**
9. Measure the New **Power Output ($P_{new} = V \times I$)**
10. Check **Convergence to MPP**:
 - If **MPP is reached**, maintain operation.
 - If **not**, return to Step 5 and continue updating particles.
11. Repeat the process continuously for real-time MPPT.

Flowchart:

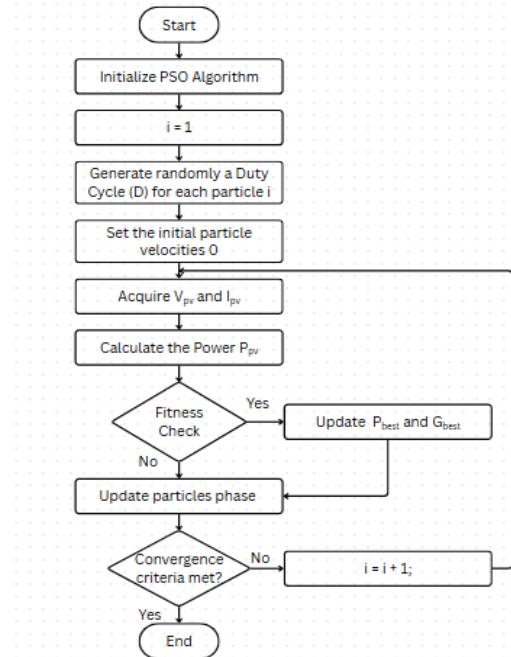


Fig.4: Particle Swarm Optimization (PSO)-Based MPPT Flowchart

2.5 Genetic Algorithm (GA)-Based MPPT [10]

Genetic Algorithm (GA) is a natural selection and genetic evolution-inspired optimization method. It is commonly utilized for Maximum Power Point Tracking (MPPT) in photovoltaic (PV) systems, particularly under partial shading and rapid weather conditions. Unlike conventional MPPT techniques (P&O, INC), GA searches for many solutions at the same time and improves the best solution over generations to converge to the Global Maximum Power Point (GMPP) rather than being trapped in local maxima.

Algorithm

1. **Start**
2. Initialize **Population of Duty Cycles (Chromosomes)**
3. Measure **Voltage (V) and Current (I) from PV Panel**
4. Compute **Power ($P = V \times I$) for Each Chromosome**
5. Evaluate **Fitness Function** (Power Maximization)
6. **Selection:** Choose the Best Individuals (Higher Power Output)
7. **Crossover:** Generate New Offspring by Combining Parent Chromosomes
8. **Mutation:** Introduce Small Random Changes for Diversity
9. Generate **New Population** Based on Selected and Mutated Offspring
10. Apply the **Best Duty Cycle to the DC-DC Converter**
11. Measure **New Power Output ($P_{\text{new}} = V \times I$)**
12. Check **Convergence to MPP:**
 - If **MPP is reached**, maintain operation.
 - If **not**, go back to Step 5 and continue evolution.

13. Repeat Until Optimal MPP is Achieved Flowchart:

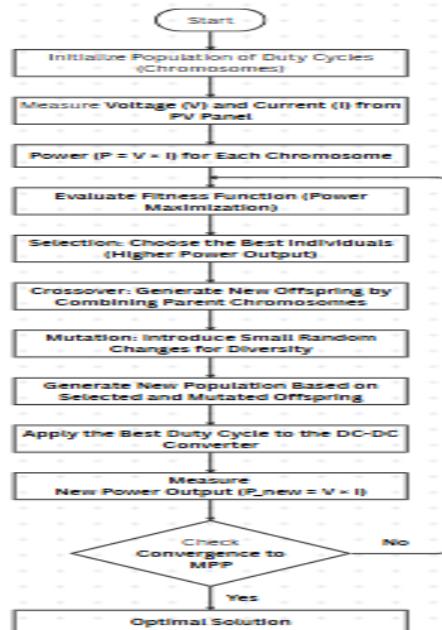


Fig.5: Genetic Algorithm (GA)-Based MPPT Flowchart

2.6 Sliding Mode Control (SMC)-Based MPPT [1]

Sliding Mode Control (SMC)-Based Maximum Power Point Tracking (MPPT) is a sophisticated nonlinear control method employed in photovoltaic (PV) systems for maximum power extraction from solar panels. SMC is renowned for its robustness, quick dynamic response, and capacity to counteract uncertainties and disturbances in the system.

Algorithm

1. **Start**
2. **Measure Voltage (V) and Current (I) from the PV panel**
3. **Compute Power (P = V × I)**
4. **Compute Error Signal (Sliding Surface, S): $S=dP/dV=d(VI)/dV$**
5. **Check the Sliding Surface Condition ($S = 0$)?**
 - o **If $S \neq 0$:** Continue sliding mode adjustments
 - o **If $S = 0$:** System is at MPP → Maintain current operation
6. **Apply Sliding Mode Controller (SMC) Switching Law:**
 - o If $S > 0$, **Increase Duty Cycle (D)**
 - o If $S < 0$, **Decrease Duty Cycle (D)**
7. **Update Duty Cycle of DC-DC Converter**
8. **Check for Steady-State Condition (Convergence to MPP)**
 - o **If MPP is not reached**, go back to Step 2
 - o **If MPP is reached**, maintain operation
9. **Repeat the process continuously for real-time MPPT**

Flowchart:

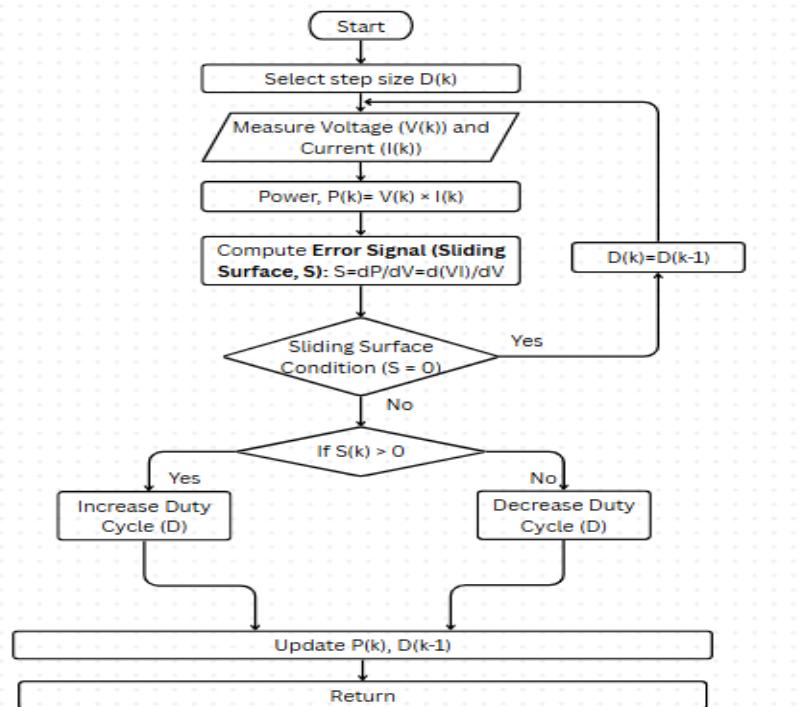


Fig.6: Sliding Mode Control (SMC)-Based MPPT Flowchart

2.7 Proposed Incremental Conductance (Inc)- MPPT Controller Based on Adaptive Neuro Fuzzy Inference Systems (ANFIS) [12,13,21,28,31,32]

Traditional INC methods use a fixed step size to adjust the duty cycle, which can lead to slower tracking of the MPP and increased oscillations near the MPP. In the proposed method, ANFIS calculates a variable step size d by measuring real-time temperature and irradiance. This step size is then passed to the INC algorithm, which adjusts the duty cycle by either increasing or decreasing it based on. The use of variable step size d in this approach effectively overcomes the limitations of the conventional INC method. The traditional INC method uses a fixed step size to adjust the duty cycle, which often leads to oscillations around the MPP and slower detection of the current MPP. In the proposed approach, ANFIS generates variable step sizes based on changes in temperature and irradiance to address the limitations of traditional methods. The INC MPPT algorithm then uses these step sizes to calculate a new duty cycle, which is applied by the Boost Converter to adjust the switching frequency accordingly. Figure 7 shows the Proposed ANFIS-based INC algorithm.

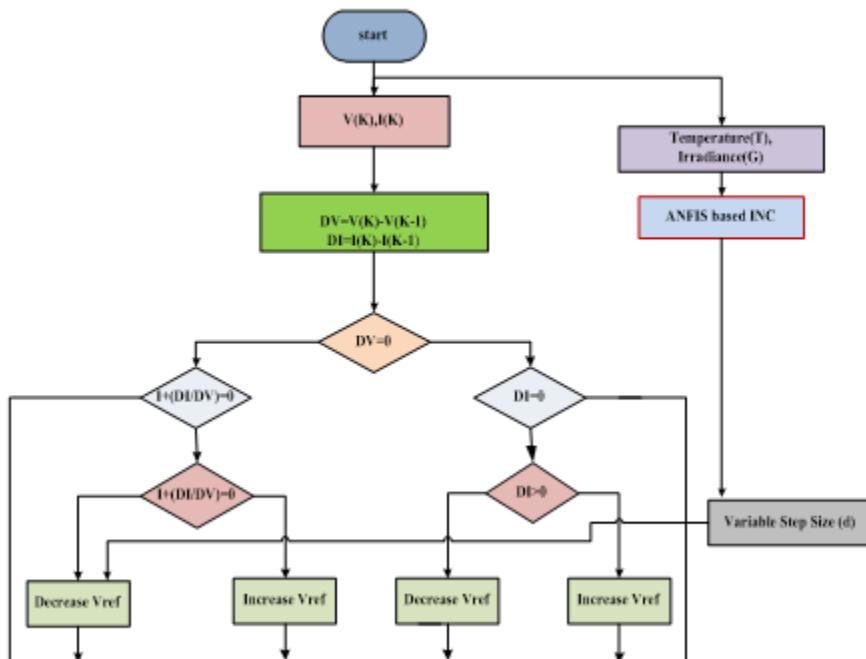


Fig. 7 Proposed ANFIS based INC Flow chart

3. Comparative Analysis

Table 1: Comparison of advanced MPPT Methods

Technique	Accuracy	Speed	Complexity	Suitability for Partial Shading	Stability
P&O Adaptive	Medium	Medium	Low	Poor	Moderate

INC with Fuzzy	High	Medium	Medium	Moderate	High
ANN-Based	High	High	High	Good	High
PSO-Based	Very High	Medium	High	Excellent	Moderate
GA-Based	Very High	Medium	High	Excellent	Moderate
SMC-Based	High	Very High	High	Good	Excellent

4. Conclusion

Newer MPPT methods ensure much enhanced energy harvesting effectiveness in renewable energy systems. ANN-based and PSO-based schemes have better tracking performance under dynamic conditions, while GA-based and SMC-based systems work well in partial shading cases. Combination of conventional and intelligent control methods using hybrid approaches results in the best overall performance. Future work should include minimizing computational complexity and enhancing real-time adaptability.

Reference

- [1] Guanghua, L., Siddiqui F. A., Aman M. M., Shah S. H., H. Ali, A. Soomar, A. M. and Shaikh S. 2024 Improved maximum power point tracking algorithms by using numerical analysis techniques for photovoltaic systems. *Results in engineering*, 21, 101740.
- [2] Yang, B., Xie R., & Guo Z. 2024 Maximum power point tracking technology for PV systems: Current status and perspectives. *Energy Engineering*, 121(8): 2009-2022.
- [3] Saravanan S., Kumar R. S. and Balakumar P. 2024 Binary firefly algorithm based reconfiguration for maximum power extraction under partial shading and machine learning approach for fault detection in solar PV arrays. *Applied Soft Computing*, 154, 111318.
- [4] Tahir M. F., Tzes A. and Yousaf M. Z. 2024 Enhancing PV power forecasting with deep learning and optimizing solar PV project performance with economic viability: A multi-case analysis of 10 MW Masdar project in UAE. *Energy Conversion and Management*, 311, 118549.
- [5] Sarkar V., Kolakaluri V. K. and Anantha S. 2025 Enhancing the maximum or flexible power point tracking control of a photovoltaic array with a non-invasive and computationally robust model-based method for partial shading detection. *Electric Power Systems Research*, 238, 111096.
- [6] Gundogdu H., Demirci A., Tercan S. M. and Cali U. 2024 A novel improved grey wolf algorithm based global maximum power point tracker method considering partial shading. *IEEE Access*, 12:6148-6159.
- [7] Khan N. M., Khan U. A., Asif M. and Zafar M. H. 2024 Analysis of deep learning models for estimation of MPP and extraction of maximum power from hybrid PV-TEG: A step towards cleaner energy production. *Energy Reports*, 11: 4759-4775.
- [8] Lv R., Zhu Y. and Yang Y. 2024 Robust design of perturb & observe maximum power point tracking for photovoltaic systems. *IEEE Transactions on Industry Applications* :6547 - 6558

[9] Mansouri A., El Magri A., Lajouad R., Giri F. and Watil A. 2024 Nonlinear control strategies with maximum power point tracking for hybrid renewable energy conversion systems. *Asian Journal of Control*, 26(2): 1047-1056.

[10] Ouatman H. and Boutammachte N. E. 2024 A genetic algorithm approach for flexible power point tracking in partial shading conditions. *Results in Engineering*, 24, 102940.

[11] Ha H. L. D., Gopal L., Chiong C. W. R., Juwono F. H. and Law K. H. 2024 A novel artificial location selection optimization for global maximum power point tracking under partial shading conditions. *Energy Conversion and Management*, 304, 118218.

[12] Karimi H., Siadatan A. and Rezaei-Zare, A. 2025 A Hybrid P&O-Fuzzy-Based Maximum Power Point Tracking (MPPT) Algorithm for Photovoltaic Systems under Partial Shading Conditions. *IEEE Access*, 13: 86046-86056.

[13] Lemmassi A., Derouich A., Hanafi A., Byou A., Benmessaoud M. and El Ouanjli N. 2024 Low-cost MPPT for triple-junction solar cells used in nanosatellites: a comparative study between P&O and INC algorithms. *e-Prime-Advances in Electrical Engineering, Electronics and Energy*, 7, 100426.

[14] Yang H., Ding K., Chen X., Jiang M., Yang Z., Zhang J., & Gao R. 2024 Fast simulation modeling and multiple-PS fault diagnosis of the PV array based on I-V curve conversion. *Energy Conversion and Management*, 300, 117965.

[15] Freitas P. A., Pires L. P., Freitas L. C., Resende É. C., Carvalho H. T., Freitas L. C. and Lima G. B. 2024 New global maximum power point tracking technique based on indirect PV array voltage control for photovoltaic string inverters with reduced number of sensors. *IEEE Access*, 12 :43495-43505.

[16] Ouatman H., Boutammachte N. E., Tafti, H. D. and Ouqour A. 2024 Enhancing PV system grid stability through reliable flexible power point tracking under partial shading. *Electrical Engineering* :1-13.

[17] Manna S., Singh D. K., Alsharif M. H., & Kim M. K. 2024 Enhanced MPPT approach for grid-integrated solar PV system: Simulation and experimental study. *Energy Reports*, 12: 3323-3340.

[18] Kumar N., and Agarwal A. 2024 Experimentally investigated machine learning based MPPT for PV panel systems. *International Journal of Ambient Energy*, 45(1), 2276127.

[19] Xia K., Li Y. and Zhu B. 2024 Improved photovoltaic MPPT algorithm based on ant colony optimization and fuzzy logic under conditions of partial shading. *IEEE Access*.

[20] Khan M., Raza M. A., Faheem M., Sarang S. A., Panhwar M. and Jumani T. A. 2024 Conventional and artificial intelligence based maximum power point tracking techniques for efficient solar power generation. *Engineering Reports*, 6(12), e12963.

[21] Turkay Y., and Yüksel A. G. 2025 Investigating The Potential of An ANFIS Based Maximum Power Point Tracking Controller for Solar Photovoltaic Systems. *IEEE Access*.

[22] Malkawi A. M., Alsaqqa Z. A., Al-Mosa T. O., Wa'el M. J., Sadedin M. M., Al-Quraan A., & AlMashagbeh M. 2025. Maximum power point tracking enhancement for PV in microgrids systems using dual artificial neural networks to estimate solar irradiance and temperature. *Results in Engineering*, 25, 104275.

[23] Nkambule M. S., Hasan A. N. and Shongwe T. 2024 Advanced Control Strategies for Photovoltaic Power Quality and Maximum Power Point Tracking Optimization. *IEEE access*.

[24] Hou G. and Guo Z. 2025 Maximum power point tracking of solar photovoltaic under partial shading conditions based on improved salp swarm algorithm. *Electric Power Systems Research*, 241, 111316.

[25] Li L, Zhao W, Wang H, Xu Z, and Ding Y. 2024 Sand cat swarm optimization based maximum power point tracking technique for photovoltaic systems under partial shading conditions. *International Journal of Electrical Power & Energy Systems*, 161, 110203.

[26] Jiang C. 2024 African vulture optimized RNN algorithm maximum power point tracking (MPPT) controller for photovoltaic (PV) systems. *Measurement: Sensors*, 36, 101392.

[27] Feraoun H, Fazilat M, Dermouche R, Bentouba S, Tadjine M, Zioui N. 2024 Quantum maximum power point tracking (QMPPT) for optimal solar energy extraction. *Systems and Soft Computing*. 6:200118..

[28] Noman A M, Alkuhayli A, Al-Shamma'a AA. 2022 Maximum power point tracking Algorithm Using ANFIS with Constant Power Generation Facility. *IEEE 16th International Conference on Compatibility, Power Electronics, and Power Engineering (CPE-POWERENG)* :1-6

[29] Nazirbhai M.N, Gajjar R.R 2023 Comparative Analysis of Perturb & Observe, Incremental Conductance and Fuzzy Logic Based Maximum Power Point Tracking Methods. *IEEE Renewable Energy and Sustainable E-Mobility Conference (RESEM)* : 1-6.

[30] Nezam A.M., Mahmood M.K., Karim S.M., Addawe A. 2024 Evaluation of Incremental Conductance MPPT Algorithm Under Varying Conditions. *21st International Multi-Conference on Systems, Signals & Devices (SSD)*: 98-103.

[31] Koche R, Lall S. 2024 Enhancing Solar PV Efficiency: A Comprehensive Review of ANFIS-Based MPPT Strategies. *IEEE 2nd International Conference on Innovations in High Speed Communication and Signal Processing (IHCS)* :1-6..

[32] Guerra MI, de Araújo FM, de Carvalho Neto JT, Vieira RG. 2024 Survey on adaptative neural fuzzy inference system (ANFIS) architecture applied to photovoltaic systems. *Energy Systems*. 15(2):505-41.

[33] Yessef M, Benbouhenni H, Taoussi M, Lagrioui A, Colak I, Bossoufi B, Alghamdi TA. Experimental validation of feedback PI controllers for multi-rotor wind energy conversion systems. *IEEE Access*. 2024 Jan 8;12:7071-88.