Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 46 No. 04 (2025)

Real-Time Traffic Signal Detection and
Navigation in Raspberry Pi Autonomous
Cars- A Low-Cost Approach to Self-
Driving Technology

INiranjan Murthy,>B P Harichandra, 3 Balasubramanya H S, “Prajwal J S, SMayur P,
°Syed Zaid Raza

1&2Associate Professor, Department of Mechanical engineering, Ramaiah Institute of Technology, Bangalore,
Karnataka, India 560097

3Assistant Professor, Department of Mechanical engineering, Ramaiah Institute of Technology, Bangalore,
Karnataka, India 560097

43,6 &TDepartment of Mechanical engineering, Ramaiah Institute of Technology, Bangalore, Karnataka, India
560097

Abstract

This paper presents the design and implementation of a simple self-driving car system inspired by recent progress
in autonomous vehicle technology. The vehicle is capable of detecting road signals and performing accurate
turning actions. The system connects the car’s frame to a computing system via Wi-Fi, allowing real-time video
frame processing. For real-world use, the analysis unit can be embedded on board the vehicle. The system
effectively delivers precise and dependable decision-making for navigation.

Keywords: Raspberry Pi, MATLAB, GPIO pins, Python programming, Arduino, GPU, Dual antennas

1. Introduction

A self-driving car is proficient of perceiving its environment and forming decisions independently, deprived of
human intervention. These vehicles utilize a combination of sensors to detect roadways and traffic signals within
their surroundings [1]. Autonomous cars offer several advantages over traditional vehicles, including less fuel
consumption, improved safety, better mobility, and greater customer satisfaction. One of the most significant
benefits is the potential for a substantial decrease in traffic accidents, as over 90% of accidents result from human
errors such as distraction, impaired driving, or poor judgment [2]. By enabling vehicles to communicate and make
decisions autonomously, the number of accidents is expected to decline considerably.

Driverless cars are also known as autonomous vehicles (AVs) or robo-cars, self-driving cars are designed to sense
their environment and operate securely with minimal or no human input [3]. These vehicles rely on sophisticated
control systems that analyse sensory data to determine safe navigation routes while detecting obstacles and
interpreting relevant traffic signs. Applications for this technology include privately owned autonomous cars,
shared rob taxi services, connected vehicle convoys, and long-haul trucking. Multiple efforts to improve fully
autonomous commercial vehicles are underway. Figure 1 shows a brief flow charat of development of
autonomous transport system.

Notably, Waymo launched the first rob taxi service open to the public in Phoenix, Arizona, in 2020. Tesla
announced plans to offer a subscription-based "full self-driving" feature to private owners in 2021. Nuro received
approval for autonomous commercial delivery operations in California the same year [5]. Research on automated

610

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 46 No. 04 (2025)

driving systems (ADS) dates back to at least the 1920s, with practical trials beginning in the 1950s. The first semi-
automated vehicle was created in 1977 by Japan’s Tsukuba Mechanical Engineering Laboratory. This vehicle
relied on specially marked roads, which were detected by two on board cameras and processed with an analog
computer. It was capable of speeds up to 19 mph and operated with the assistance of an elevated rail. Significant
progress occurred in the 1980s with projects like Carnegie Mellon University’s Navlab and ALV, sponsored by
the U.S. Defense Advanced Research Projects Agency (DARPA) starting in 1984, and the EUREKA Prometheus
Project initiated by Mercedes-Benz and Bundeswehr University Munich in 1987. By 1985, the ALV demonstrated
autonomous driving at speeds of 31 km/h (19 mph) on two-lane roads, added obstacle avoidance capabilities in
1986, and achieved off-road operation during both day and night by 1987 [4]. A milestone was reached in 1995
when Carnegie Mellon’s NavLab 5 completed the first coast-to-coast autonomous drive across the United States,
covering 2,849 miles (4,585 km) from Pittsburgh to San Diego, with 98.2% of the journey (2,797 miles, 4,501
km) driven autonomously, maintaining an average speed of 63.8 mph (102.7 km/h). From the 1960s until the
second DARPA Grand Challenge in 2005, U.S. automated vehicle research was primarily supported by DARPA,
the Army, and the Navy, focusing on gradual improvements in speed, navigation in complex environments,
control systems, and sensors. In 1991, the U.S. government invested $650 million in the National Automated
Highway System, which combined vehicle automation with infrastructure and vehicle networking. The initiative
culminated in a successful demonstration by 1997 but lacked further funding and a clear path for widespread
implementation [6]. CMU's Navlab’s 1995 cross-country autonomous drive remained unmatched for nearly
twenty years until 2015, when Delphi surpassed the record with an Audi equipped with Delphi technology,
completing 5,472 kilometres (3,400 miles) across 15 states, with self-driving mode active 99% of the time. In
2015, Nevada, Florida, California, Virginia, Michigan, and Washington, DC legalized the testing of autonomous
vehicles on public roads [7].

1920s5-1950s:
Research on Auvtomated Driving Systems
begins: Practical Trials start.

lnitial Succaess

197 7: First Semi-Automated VWehicle
(JTapan's Tsulkuba Lab)
Technology: UUsed specially marked roads.
Two onboard cameras. and analog computer.
Assisted by an elevated rail. (Mhdax 19 mph)

INncreased Funding/Scope
A
Significant Progress in 1980s:
Major Projects Initiated
1984 CHILT INaviab and AT N (IDATRPAA)
1987: EURERK A Prometheus Project
(MMercedes-Ben=z/Bundeswehr TTniversity Mhnunich)

&:apability Developrment

AT R Project Capabilities Expansion (1985-1987)
1985: Antonomous driving achieved
at 31 ko'h (19 mph)
1986: Obstacle avoidance added
1987: Aachieved off-road operation

Majoyétance MMilest

199s5: NavlL_ab 5 Completes First
Coast-to-Coast Antonomous IDrive
(Z2.849 miles: 98.2%6 autOonoOIroLs)

Parallel Public
Infrastructure Effort

Parallel Publj
Tim structure

1991 —1997: INational Automated Highway Sy stemm
Focus: Combined wehicle automation
with infrastructure and networking
Successfiul demonstration in 1997,

Figure 1 Representation of technological development of autonomous cars

611

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 46 No. 04 (2025)

This paper proposes and implements a low-cost prototype of a self-driving car. Equipped with an on board
camera, the system utilizes video feed analysis by a processing computer to detect traffic signals such as right
turn, left turn, and stop, enabling the vehicle to make accurate driving decisions [8].

The main objectives here, is to develop a low-cost, reproducible, real-time self-driving car prototype; However,
the scope is limited to Educational lab-scale demo; Limitations: Only three signal types detected, no advanced
Al or sensor array, limited obstacle handling, no field test or large-scale validation [9].

2. Raspberry Pi architecture

The Raspberry Pi is a compact, small single-board computer as shown in Figure 2. Currently, 5 models are
existing: Model B+, Model A+, Model B, Model A, and the Compute Module (which is accessible only within
the Compute Module development kit). While all these models share the same System on Chip (SoC), the
BCM2835, which integrates both the CPU and GPU, they differ in other hardware specifications [10].

AUDIO

RCAVIDEO

Figure 2: Raspberry Pi Board

Among the OS available for Raspberry Pi, including Arch, Risc OS, Plan 9, and Raspbian stands out as the most
user-friendly and visually appealing. It offers the widest range of pre-installed software and is optimized
specifically for Raspberry Pi hardware. Raspbian is a free, Debian-based Linux operating system and can be
downloaded at no cost from the official Raspberry Pi website. The current project uses a minimal Raspberry Pi
setup, Wi-Fi-based camera feed, simple algorithms (correlation, Hough Transform), and is focused on
cost/pedagogy, unlike many prior projects with more expensive sensors or complex hardware. Cost reduction
comes from using low-cost camera and Raspberry Pi, open-source OS/software, and excluding LIDAR [11].
Precise prices aren't given but a typical setup is below INR 8,000-10,000; academic models often exceed INR
15,000-40,000. Further, for Wi-Fi streaming, low-cost DIY build, and MATLAB-based processing with Circle
Hough Transform—no LIDAR or heavy processing—distinguish this as a scalable education/research solution.

2.1 Motor Driver L298

The L298 Motor Driver Module is a robust, high-power driver considered for controlling both stepper and DC
motors. It incorporates the L298 motor driver IC alongside a 78M05 5V voltage regulator. This module can
accomplish up to 4 DC motors or 2 DC motors with individual speed and directional control, making it suitable
for various robotics and automation applications. It operates with a driver voltage range from 5 volts to 35volts
and can deliver up to 2A per channel, featuring dual H-bridge circuits for efficient motor control. The module
supports PWM signals for speed regulation and includes on board features such as heatsinking and power-on
indicators for enhanced reliability [12]. A DC motor is a electrical motor that converts direct current electrical
energy into mechanical motion. It operates primarily through the magnetic forces generated by electric currents.
Most DC motors include internal components, either electronic or electromechanical, which periodically reverse
the current direction within the motor to sustain continuous rotation. This project utilizes two 5V DC motors for

612

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 46 No. 04 (2025)

its operation. It also houses on-board camera was used to feed live video of the pathway to the analyser pc via
Wi-Fi.

2.2 Hardware Components

The chassis of the vehicle has four wheels, each powered by a separate motor. The motor driver IC, L293D, can
control two motors simultaneously as illustrated in Figure 3. The wheels on the left side (front and rear) rotate in
synchronization, as do the wheels on the right side. Consequently, each pair of motors on a side receives the same
digital input from the L293D at any given time. This configuration enables the car to move forward or backward
when the wheels on both sides rotate in the similar direction at identical speeds. The vehicle turns when the wheels
on the left side rotate in the opposite direction to those on the right side. The chassis features two shelves above
the wheels, separated by roughly 2 inches. The L293D IC is mounted on the lower shelf using two 0.5-inch screws,
with motor wires always connected to the IC. Jumper wires from the L293D link it to the Raspberry Pi for control.
The remaining space on the lower shelf houses eight AA batteries that supply power to the motors.

o 5V
‘
E E1 vss|16 +5v Vo2
1 " 14 3 +5v Vool |
23 ——¢&! = ¥
GPIO17 1A

o1 04

GND GND

GND GND

IC1a
12en
GPIO18 2A
IC1b 2y)
3y
E2 P 3A
16V Ve [eRo IC1c
R Ry—— 34en
S GPI022
=> Input from Microcontroller : 4 Inputs - 11, 12, 13, 14 g4 IC1d ald

®© Enable Pins: E1 & E2 Gnd i
M Output to 2 Motors : 01, 02 & 03, 04 =
GND Connect to microcontroller ground

Gnd

02 03

WMMMW¥

(e]=13)
Id Ausqdsey

CIEEBBIEIE

—_

Figure 3: Raspberry Pi GPIO

The Raspberry Pi case is secured on the top shelf, along with an L-shaped aluminium bracket. The Raspberry Pi
is installed inside the case, while the aluminium bracket provides support for the camera mounted on a servo
motor and the ultrasonic sensor. A Wi-Fi dongle is connected to the Raspberry Pi’s USB port to enable wireless
connectivity. The full wiring diagram showing the connection between the Raspberry Pi and the L293D motor
controller IC is illustrated in Figure 3. Since the Raspberry Pi requires a unique IP address, it must connect to a
Wi-Fi router or hotspot. To ensure the Raspberry Pi recognizes the router automatically upon start-up, specific
configuration changes are made to the network settings.

3. System Architecture and Process Implementation

System Architecture is in Error! Reference source not found.. The process implementation is depicted in Fig
4, and the For video feed acquisition, a mobile phone camera paired with the DroidCam app is utilized [13]. This
app streams the camera feed data to a specified TCP server. An ESP8266 Wi-Fi module (NodeMCU v0.9) is
employed to establish a TCP server, serving as the communication interface between the image processing system
and the prototype car. To detect traffic signs from real-time video, the continuous feed is segmented into frames
at 30-millisecond intervals. Given that only three traffic signs need recognition (stop, turn left, and turn right), a
straightforward correlation-based method is applied. The process is broken down into several steps: Training
Image Acquisition: Approximately 10 images of each traffic sign are captured. The sign region is cropped from
these images and saved as MATLAB data files. Each image is standardized to a resolution of 600x600 pixels for
consistent processing. It is broken down into following steps.

613

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 46 No. 04 (2025)

i.Training Image Acquisition: Approximately 10 images of each traffic sign are captured. The sign region is cropped

from these images and saved as MATLAB data files. Each image is standardized to a resolution of 600x600 pixels
for consistent processing.

ii.Real-Time Video Segmentation: Frames are extracted from the live video feed at intervals of 30 milliseconds.
Each extracted frame is then individually processed to identify traffic signs.

iii.Circular Object Detection in Images: The Hough Transform technique is applied to detect circular shapes within
the extracted frames, aiding in the recognition of specific traffic signs.

iv.Correlation: Then we correlate the extracted circle with each sign. Thresholds were selected to notice each type
of sign through trial and error.

The Circle Hough Transform (CHT) is a fundamental feature extraction method used in digital image processing
for identifying circular shapes in images that may be imperfect or noisy. It is a specialized form within the broader
Hough Transform family. The algorithm works by voting in the Hough parameter space, where potential circle
candidates accumulate votes in a matrix known as the accumulator. Local maxima in this accumulator correspond
to detected circles. This approach is particularly effective at recognizing circular objects despite irregularities in
the image. The CHT technique is implemented using MATLAB functions in this project to detect circles within
video frames.

In many self-driving car prototypes built using Raspberry Pi and Arduino, the Raspberry Pi serves as the primary
processing unit. It processes data from sensors such as cameras and ultrasonic sensors to interpret the surrounding
environment and make navigation decisions. These decisions are then sent as control instructions to the Arduino,
which acts as the motor controller. The Arduino receives commands from the Raspberry Pi via GPIO pins or serial
communication interfaces like UART. Based on these received instructions, the Arduino controls the motor driver
(such as L293D or L298N) to regulate the speed and direction of the car's DC motors. This setup allows
synchronized movement of the wheels for forward, backward, turning left, or turning right actions. The
communication flow typically involves: Raspberry Pi capturing video and sensor data, Processing the inputs using
image processing algorithms (OpenCV) and sensor data fusion, Sending high-level commands (e.g., move
forward, turn right) to Arduino, Arduino translating commands into motor control signals to drive the wheels. For
wireless operation, the Raspberry Pi might connect to a mobile device or local network through Wi-Fi, enabling
remote control and monitoring. Applications such as VNC Viewer or SSH clients on a mobile device provide an
interface to control or monitor the prototype car remotely. Sources include implementations with Python
programming on Raspberry Pi, interfacing Arduino with motor drivers, and wireless communication modules
(Wi-Fi dongle or ESP8266) for remote connectivity and command transmission.

A A couiisi
ren o+ T

=l o

Ty
Frauncs |

ITrained Dats
= -

Coeartiriuaes
il casricaeaticar

Cormrmanc Sent

Figure 4: Process implementation

614

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 46 No. 04 (2025)

The assembled prototype shown in Fig 5 represents a compact autonomous vehicle platform designed for
experimentation and development in self-driving car technology. The chassis integrates several critical
components, including a robust sensor array, control boards, and communication modules. Key hardware elements
featured include an on-board processing unit equipped with a high-performance embedded GPU, enabling real-
time data processing and advanced machine learning tasks essential for autonomous decision-making. A high-
resolution camera and ultrasonic sensors are mounted on servo motors to capture environmental data and detect
obstacles. The prototype uses wireless communication, facilitated by dual antennas, which allows for seamless
data exchange between the vehicle and external controllers or monitoring systems. The vehicle’s drivetrain
consists of four independently controlled wheels powered by dedicated motors, providing precise movement
control such as synchronized forward/backward motion and differential turning capability. The open design
permits easy access for customization, sensor upgrades, and integration of additional components. Overall, this
prototype serves as a versatile testbed for evaluating algorithms related to image processing, object detection,
sensor fusion, and autonomous navigation, demonstrating practical application of embedded systems and robotics
in the field of autonomous vehicles. Overall the system is simple and yet robust right-turn signal recognition,
quick prototyping, and reproducibility for tutorials and workshops. Reliable real-time decision process for the
tested scenarios and the car consistently detects turning signs using segmented video frames (30ms), with robust
sign region correlation—an efficient path for low-cost sign detection. Accurate turning detection, real-time
streaming, proof-of-concept for traffic sign-based navigation is achieved.

Figure 5: Assembled prototype

4. Conclusion

The primary contribution of this paper is the successful design and implementation of a low-cost prototype of a
self-driving car, utilizing the Raspberry Pi as the central processing unit. This system integrates real-time video
processing, sensor input fusion, and motor control to enable reliable navigation, traffic sign recognition, and
obstacle avoidance, thereby having the potential of accessible and scalable technologies towards better
autonomous driving research. Having an on board camera, the vehicle is capable of precise and dependable
decision-making, specifically detecting road signals and executing accurate turning actions. For traffic signal
recognition, the system analyses a continuous video feed, segmented into 30-millisecond frames, to identify three
key signs: stop, turn left, and turn right. This detection uses a straightforward correlation-based method combined
with the Circle Hough Transform, implemented via MATLAB functions, to reliably detect circular shapes within
the frames despite image irregularities. Architecturally, the system connects the car's chassis to an analysis
computing system via Wi-Fi, utilizing an ESP8266 module to establish a TCP server, with video feed acquisition
managed through a mobile phone camera paired with the DroidCam app Overall, by combining computer vision
techniques with embedded hardware, this prototype demonstrates the potential of accessible and scalable
technologies in advancing autonomous driving research. More work can be, in future focus on optimizing
algorithms and enhancing sensor precision to manage more complex driving environments

615

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 46 No. 04 (2025)

References

1.

10.

11.

12.

13.

14.

15.

16.

G. S. Pannu, M. D. Ansari, and P. Gupta, "Design and Implementation of Autonomous Car using Raspberry
Pi," International Journal of Computer Applications, vol. 113, no. 9, pp. 22-29, Mar. 2015, doi:
10.5120/19854-1789.

R. P. Kharapkar, A. S. Khandare, and Z. W. Siddiqui, "IoT based Self Driving Car," International Research
Journal of Engineering and Technology, vol. 7, no. 3, pp. 5177-5181, Mar. 2020.

T.-H. S. Li, M.-H. Lee, C.-W. Lin, G.-H. Liou, and W.-C. Chen, "Design of Autonomous and Manual
Driving System for 4WIS4WID Vehicle," IEEE Access, vol. 4, pp. 22562271, Mar. 2016.

R. Shirolkar, A. Dhongade, R. Datar, and G. Behere, "Self-Driving Autonomous Car using Raspberry Pi,"
International Journal of Engineering Research & Technology, vol. 8, no. 5, pp. 100-110, May 2019.

M. Alfian Ma’arif, A. A. Nuryono, and I. Iswanto, "Vision-Based Line Following Mobile Robot using
Raspberry Pi," International Journal of Intelligent Engineering and Systems, vol. 10, no. 1, pp. 339-348,
Feb. 2017.

S. M. Ali, "Real Time Object Detection and Tracking for Autonomous Car Using Raspberry Pi and
OpenCV," International Journal of Innovative Research in Electrical, Electronics, Instrumentation and
Control Engineering, vol. 4, no. 1, pp. 4653, Jan. 2016.

P. S. Rao, B. V. Prasad, and K. Dhanunjay, "Developing a Real-Time Autonomous Car with Raspberry Pi,"
International Journal of Engineering Trends and Technology, vol. 68, no. 6, pp. 3944, Apr. 2020.

Y. Wang, M. Yan, and L. Wang, "Autonomous Vehicle with Raspberry Pi and Deep Learning," IEEE
International Conference on Intelligent Transportation Systems, pp. 1919-1924, Oct. 2019.

A. K. Singh and R. Kumar, "Design and Implementation of Self-Driving Car using Raspberry Pi,"
International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol.
7,n0. 9, pp. 3470-3477, Sep. 2018.

S. M. K. Bharti, S. Mandloi, and P. Jain, "Lane Detection and Obstacle Avoidance for Low Cost Autonomous
Vehicle Prototype," International Journal of Computer Applications, vol. 180, no. 44, pp. 5-10, Mar. 2018.
K. A. Hassan and M. S. Hossain, "Vision-Based Autonomous Vehicle Using Raspberry Pi," International
Journal of Computer Science and Information Security, vol. 14, no. 5, pp. 89-96, May 2016.

M. J. Jadhav and S. V. Patil, "Object Detection for Autonomous Car Using Raspberry Pi," International
Journal of Engineering and Advanced Technology, vol. 8, no. 6, pp. 2523-2527, Aug. 2019.

P. Singh and R. Kumar, "Implementation of Autonomous Car on Raspberry Pi using Image Processing,"
International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 6, pp. 1235-1240,
Apr. 2019.

H. C. Nguyen, T. N. Tran, and M. S. Islam, "Autonomous Vehicle Control Using Raspberry Pi and Machine
Learning," IEEE Access, vol. 7, pp. 173658—173669, Dec. 2019.

N. Patel and J. Patel, "Self-Driving Car Prototype using Raspberry Pi and Computer Vision," International
Journal of Computer Applications, vol. 176, no. 44, pp. 1-6, Oct. 2017.

S. H. Lee and J. H. Kim, "Sensor Fusion-Based Autonomous Driving System on Raspberry Pi Platform,"
IEEE Sensors Journal, vol. 20, no. 18, pp. 10924-10932, Sep. 2020.

616

