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Abstract: - In video analytics, the detection of a human fall event is a critical application of video surveillance 

systems installed for the safety of children and senior citizens. In this paper, a novel method is proposed for real-

time human fall event detection in a compressed video, which employs motion vectors (MV), and Transformer 

Prediction Heads -You only look once version five (TPH-YOLOv5) with fuzzy logic based multi object tracking. 

It is termed as FMVCNN. The video compression formats, namely, MPEG-4 and H.264 are examined for 

validating this method. The proposed method can be adapted to any format of video codecs and any type of camera 

settings without any prior setup.Numerous algorithms have been explored in the literature for detecting human 

fall events within compressed domain video, but they suffer from limitations on account of (i) keyframes set at a 

constant interval, (ii) utilization of only P frames, and (iii) setup specially for a given particular codec i.e. need to 

resetup every time codec changes. The proposed method addresses these limitations by using keyframe intervals 

of variable length, utilization of P/B frames, and setting up different codec variants. Further the crucial step of 

event box prediction in video frames is done using fuzzy logic, where in the motion vectors that constitute event 

box is a fuzzy set representing uncertainty in motion vectors related to an event. The experimental setup takes into 

account the benchmark datasets for fall events, which are Le2i, UR, and Multiple Cameras. The experimental 

outcomes of the proposed FMVCNN approach encouraging and compare well with those in recent literature for 

raw (uncompressed) video data. The proposed FMVCNN surpasses existing contemporary approaches executed 

in the compressed domain by markedly enhancing both the accuracy and speed of event detection. The ablation 

study considered various FMVCNN variants resulting from different video codecs, fuzzy representations, video 

datasets, and YOLO architectures. 

Keywords: Convolutional Neural Network, Video Processing, Motion Vectors, Transformer, Attention 

Mechanism, Fuzzy Inference. 

 

1. Introduction 

Incidents of fall during human activities frequently occur and are a matter of considerable concern. Injuries 

sustained during falls frequently correlate with mortality among older persons and certain patients [1].Detecting 

falls is crucial for the protection of children, the elderly, and patients in both solitary interior environments and 

busy outdoor settings. Video monitoring of such incidents is an efficient technical solution for addressing these 

security issues.  

Human fall detection systems are generally divided into two main types: those that use wearable sensors and those 

that employ computer vision technology. Furthermore, [2] provides a comprehensive overview of various sensor-

based and vision-based techniques for identifying human activities. Systems based on wearable sensors utilize 

various sensors, such as heart rate monitors, gyroscopes, and complete data collecting systems [3], attached to 

those at risk of falling. Wearable sensor-based devices employ computationally demanding measures to identify 

inappropriate human behavior, such as calculating frontal area and expecting skeletal joint positions. Additionally, 

many sensor-based systems need the user to physically wear the sensors. Individuals sometimes forget or may 

feel uneasy wearing such devices. In these situations, video surveillance systems can be employed for the passive, 

continual monitoring of individuals. Upon the occurrence of anomalous activity, such as a fall, computer vision-
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based systems alert the designated caregiver for prompt assistance, therefore enhancing the individual’s well-

being. Surveillance cameras have emerged as a significant medium for monitoring the actions of those at risk of 

falling, circumventing the limitations of wearable devices. The diverse angles resulting from different camera 

positions necessitate an innovative training approach [4] for identifying potential areas of interest. When designing 

a system to detect human falls, the visual clues shown in these video sequences are crucial.  

In the realm of literature, methods for detecting falls in surveillance videos aim at extracting the contour and 

configuration of individuals to identify their atypical movements. Nevertheless, the efficiency of these approaches 

is affected by the presence of a person’s shadow and the perspective from which they are viewed. Automatic 

spatio-temporal feature extraction from massive datasets is achieved by deep learning approaches utilizing 

convolutional neural networks (CNNs) and long short-term memory (LSTM) architectures. 

The issue of identifying fall events in compressed videos has been explored by numerous researchers in the 

existing literature. However, these methods suffer from limitation that arises due to the utilization of keyframes 

set at fixed intervals and only the P frames, which results in reduction of the speed of processing and visual quality 

of videos in the compression domain [5]. Further, some sources do not permit setting up a chosen codec, keyframe 

interval, or frame type. 

The objective of the study in this paper is to develop a novel method for human fall event detection in a video 

under a compression format, which overcomes the limitations and yields improved results. The MPEG-4/H.264 

videos are examined for the validation of this method. The main contributions in this study are:   

1. Fall event detection algorithm, termed as FMVCNN, using motion vectors in the video codecs (MPEG-

4/H.264), TPH-YOLOv5 followed by fuzzy based tracker, which supports (i) variable keyframes 

intervals, (ii) P/B frames, and (iii) scale variations of objects. 

2. The validation of FMVCNN by experimentation on the videos of fall event datasets: Le2i, UR, and 

Multiple Cameras, in terms of performance metrics: precision, recall, F-score, speed, parameters and 

GFLOPS. 

3. Ablation study comprises the performance analysis of FMVCNN implemented on two codecs: MPEG-4 

(P frames) and H.264 (P/B frames), and that of FMVCNN variants, which are compared with the recent 

SOTA methods. 

The organization paper comprises five sections. Section 2 provides an overview of the recent related work. Section 

3 outlines the proposed FMVCNN algorithm for detecting fall events. Section 4 presents the experimental results 

and analysis. Finally, Section 5 presents the conclusions. 

2. Related Work 

Fall detection [6] involves recognizing when a person has fallen, with the goal of triggering an alert, such as 

notifying a caregiver or dispatching an ambulance. Approaches to fall detection are typically divided into sensor-

based [7] and vision-based [6] methods. Although vision-based techniques provide extensive information, their 

effectiveness has been limited by computational constraints and algorithmic difficulties until recent 

advancements. With the advent of deep learning networks, the focus of fall detection research is shifted more 

towards vision-based solutions. 

Fall detection differs from typical video classification tasks, as it requires rapid identification of potential falls in 

real-time video streams. To achieve this, the model must generate intermediate outputs. A widely-used technique 

involves applying a sliding window to analyze frame segments and detect falls. Yu et al. [8] were among the first 

to apply convolutional neural networks (CNNs) for fall detection, extracting binary silhouettes from each frame 

and performing pose classification to detect falls. Le et al. [9] opted to extract features from wearable devices 

rather than relying on poses. Adrián Núñez-Marcos et al. [10] proposed a fall detection solution using 

transformers, which analyze video clips to determine fall occurrences with a sliding-window approach for real-

time alerts. Deep Feature Fusion with Computer Vision for Fall Detection and Classification (DFFCV-FDC) [11] 

technique utilizes Gaussian filtering for noise reduction and combines MobileNet, DenseNet, and ResNet for deep 

feature fusion. It demands considerable computational resources and not well-suited for real-time applications in 

dynamic environments. Yue Wang et al. [12] proposed fall detection algorithm using a single webcam, optimizing 
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precision and efficiency by combining background subtraction with the BlazePose human pose estimation model. 

Nicolas Thome et al. [13] devised a fall detection algorithm employing a multiview approach, in which motion is 

represented through a layered hidden Markov model (LHMM). Caroline Rougier and colleagues [14] introduced 

a technique centered on shape matching to effectively track an individual’s silhouette throughout the video 

sequence using Gaussian mixture model. Lina Wu and colleagues [15] introduced an unsupervised fall detection 

method using GAN that leverages human pose images to reduce background noise, thereby safeguarding privacy. 

To identify human actions in compressed videos using BiLSTM, Praveenkumar et al. [16] proposed an attention-

guided method. 

2.1. Video Compression 

Compression of digital video entails the elimination of both spatial and temporal redundancies within a video, 

thereby decreasing the number of bits required per frame. The compressed video is suitable for saving storage and 

transmission costs. A standard video codec consists of a series of intra (I) frames and inter frames, where an I 

frame is succeeded by a series of P or B frames as inter frames. An I frame provides a comprehensive color 

representation (e.g. RGB) in its entirety, while a P/B frame captures only the variations in pixel values relative to 

the frames that come before or after it. The P frames consist of the motion vectors and residuals that are predicted 

from prior I or P frames, whereas the B frames are made up of motion vectors and residuals predicted from both 

preceding and subsequent frames. B frames demonstrate a superior compression ratio relative to P frames, as they 

leverage information from both preceding and subsequent frames for predictive analysis. Motion vectors denote 

a specific pixel block within a frame that correspond to the related area in the subsequent frame. The residual 

indicates the discrepancy in motion prediction [17]. 

3. Proposed Methodology 

3.1. FMVCNN 

The proposed method FMVCNN facilitates real-time human action recognition related to human fall events in 

compressed video. Transformer Prediction Heads-You Only Look Once version five (TPH-YOLOv5) [18] is 

utilized for analyzing spatio-temporal features in videos, specifically the motion vectors, which detects objects of 

varying sizes. The fall event relates to the fall of a pedestrian. The implementation focuses on the MPEG-4 and 

H.264 compressed domains. 

The methodology encompasses the detection of fall events, the fuzzy logic based prediction of event boxes, and 

the association of data, as depicted in Fig. 1. Tracking an object entails two fundamental steps: prediction and 

update. During prediction steps the event box detection is done, wherein the recognition of action 𝐴𝑡 at time t is 

achieved by leveraging the preceding action 𝐴𝑡−1 from time t-1, in conjunction with the fuzzy subset of motion 

vectors present in frame 𝐹𝑡 at time t. The update step on each frame is done by action recognition in I frames at 

regular k-spaced intervals, which resets the accumulated error in order to detect persons (objects) that 

appear/disappear from the scene captured in the frame. The TPH-YOLOv5 identifies the action 𝐷𝑡 . The process 

of matching detected events that have confidence scores surpassing the threshold 𝜃𝑐 with predicted event boxes 

in 𝐴𝑡 occur during the data association phase. At this stage, the calculation of all pairwise intersection-over-union 

(IoU) cost measures is done, and the Hungarian method [19] is employed to match detected event actions with the 

predicted event actions. Two event boxes are considered matched when the Intersection over Union (IoU) distance 

between them exceeds the threshold value denoted as 𝜃𝐼𝑜𝑈 

3.2. Motion Vectors 

In a compressed domain, the video encoding constitutes some key frames that are in full form and a sequence of 

several non-key frames intervening every pair of consecutive key frames. Every non-key frame is divided into 

macroblocks. For each macroblock, a motion vector is calculated that directs to a macroblock with analogous 

characteristics in the subsequent frame (denoted by red arrows in Fig. 2). Thus, information content in the form 

of motion vectors is an efficient video encoding. MPEG-4 features macroblocks that are 16 × 16 pixels in size, 

whereas H.264 utilizes macroblocks that can be either 4 × 4 or 16 × 16 pixels. A sequence of video frames In the 

interval between two successive key frames, one might encounter frames of P or B type. A non-key frame is 
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classified as P type if motion vectors pertain only to preceding frames, while it is classified as B type if motion 

vectors reference non-key frames from both preceding and succeeding frames. In MPEG-4, a non-key frame is 

solely of type P, while in H.264, it can be of P or B type. The motion vectors serve as representations of moving 

objects within a frame and are utilized in the recognition of human actions visually. 

In an encoded video, motion vectors are calculated and accessible within its codec, such as MPEG-4 or H.264[5]. 

A motion vector in the frame 𝐹𝑡 at time t is represented by the ten-tuple  

 
𝑚𝑗

𝑡 = (𝑠𝑗
𝑡 , 𝑣𝑗,𝑤

𝑡 , 𝑣𝑗,ℎ
𝑡 , 𝑥𝑗,𝑠𝑟𝑐

𝑡 , 𝑦𝑗,𝑠𝑟𝑐
𝑡 ,

𝑥𝑗,𝑑𝑠𝑡
𝑡 , 𝑦𝑗,𝑑𝑠𝑡

𝑡 , 𝑣𝑗,𝑥
𝑡 , 𝑣𝑗,𝑦

𝑡 , 𝑣𝑗,𝑠
𝑡 )

 (1) 

 which possesses the reference frame 𝐹𝑡+𝑠𝑗
𝑡

 characterized by the offset 𝑠𝑗
𝑡 in relation to 𝐹𝑡. In a P frame, 𝑠𝑗

𝑡 takes 

on a negative value, while for a B frame, it is positive. The variables 𝑣𝑗,𝑤
𝑡  and 𝑣𝑗,ℎ

𝑡  represent the width and height 

of the macroblock, respectively, in relation to the motion vector. Figure 3 illustrates the computation of motion 

vectors. A motion vector in 𝐹𝑡 originates from the center (𝑥𝑗,𝑑𝑠𝑡
𝑡 , 𝑦𝑗,𝑑𝑠𝑡

𝑡 ) of its associated macroblock and directs 

towards the center (𝑥𝑗,𝑠𝑟𝑐
𝑡 , 𝑦𝑗,𝑠𝑟𝑐

𝑡 ) of the macroblock in the reference frame that exhibits a comparable appearance. 

Additionally, 𝑣𝑗,𝑥
𝑡  and 𝑣𝑗,𝑦

𝑡  represent the x- and y-components of 𝑚𝑗
𝑡, which are scaled by 𝑣𝑗,𝑠

𝑡  in accordance with 

the following relations:  

 
𝑥𝑗,𝑠𝑟𝑐

𝑡 = ⌊𝑥𝑗,𝑑𝑠𝑡
𝑡 + 𝑣𝑗,𝑥

𝑡 /𝑣𝑗,𝑠
𝑡 ⌋,

    𝑦𝑗,𝑠𝑟𝑐
𝑡 = ⌊𝑦𝑗,𝑑𝑠𝑡

𝑡 + 𝑣𝑗,𝑦
𝑡 /𝑣𝑗,𝑠

𝑡 ⌋
 (2) 

Generally, the quantity |𝑀𝑡| of motion vectors within the set 𝑀𝑡 ⊂ 𝑍10 of motion vectors in 𝐹𝑡 at time t may 

fluctuate from one frame to another. For key frames, it holds that 𝑀𝑡 = ∅, i.e. 𝑀𝑡 = 0. 

3.3. Handling of Key Frames 

The absence of motion vectors in key frames presents challenges for action recognition that relies on motion 

vectors when these frames appear in a compressed video frame sequence. In the proposed method, a novel 

technique is utilized for managing keyframes during action recognition and update steps, occurring at intervals of 

length k, regardless of the frame type (key or non-key frame) encountered. In the action recognition process, for 

a key frame, set 𝑀𝑡 = 𝑀𝑡−1; that is, the motion vectors from the preceding frame are utilized for action recognition 

computation. This holds true under the assumption that the change between two consecutive frames due to object 

motion is minimal, leading to the conclusion that 𝑀𝑡−1 ≅ 𝑀𝑡. Consequently, 𝑀𝑡−1 is employed for action 

recognition when 𝑀𝑡 for a key frame is unavailable 

3.4. Handling of Key Frames 

In the procedure for event box prediction, the bounding boxes 𝐵𝑡  are generated using information from both the 

past predicted boxes 𝐵𝑡−1 and present motion vectors 𝑀𝑡. The core concept involves a fuzzification process, 

wherein the adjustment of the centre of each box in 𝐵𝑡−1 takes into account the fuzzy set representation of x and 

y components of motion vectors originating within the box. Despite accounting for scale changes in the boxes, a 

notable enhancement in tracking performance persists, showcasing the efficacy of the fuzzy logic based tracking 

methodologies in achieving improved tracking speed and robustness. The algorithm is structured to address 

scenarios involving frames of either P type exclusively or P/B type. The process includes the following steps:   

  1.  Define the subset 𝑀̃𝑡 ⊂ 𝑀𝑡 consisting of motion vectors that possess a non-zero magnitude.  

 𝑀𝑡̃ = {𝑚𝑗
𝑡 ∈ 𝑀𝑡|((𝑣𝑗,𝑥

𝑡 )2 + (𝑣𝑗,𝑦
𝑡 )2)1/2 > 0}. (3) 

 2.  The temporal distance 𝑠𝑗
𝑡 is used to rescale the x- and y-components of motion vectors 𝑚𝑗

𝑡 ∈ 𝑀̃𝑡:  

 𝑣𝑗,𝑥
𝑡

= 𝑣𝑗,𝑥
𝑡 /𝑠𝑗

𝑡 ,    𝑣𝑗,𝑦
𝑡

= 𝑣𝑗,𝑦
𝑡 /𝑠𝑗

𝑡 . (4) 
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 3.  Obtain the floating-point resolution using motion scale 𝑣𝑗,𝑠
𝑡 :  

 𝑣̃𝑗,𝑥
𝑡 = 𝑣𝑗,𝑥

𝑡
/𝑣𝑗,𝑠

𝑡 , 𝑣̃𝑗,𝑦
𝑡 = 𝑣𝑗,𝑦

𝑡
/𝑣𝑗,𝑠

𝑡 . (5) 

 4.  Establish the new reference points Vectors  

 𝑥̃𝑗,𝑠𝑟𝑐
𝑡 = Rescale𝑥(𝑥𝑗,𝑠𝑟𝑐

𝑡 ), 

 𝑦̃𝑗,𝑠𝑟𝑐
𝑡 = Rescale𝑦(𝑦𝑗,𝑠𝑟𝑐

𝑡 ) 

 employing rescaled x- and y-components:  

 𝑥̃𝑗,𝑠𝑟𝑐
𝑡 = 𝑥𝑗,𝑑𝑠𝑡

𝑡 + 𝑠𝑗
𝑡𝑣̃𝑗,𝑥

𝑡 , 𝑦̃𝑗,𝑠𝑟𝑐
𝑡 = 𝑦𝑗,𝑑𝑠𝑡

𝑡 + 𝑠𝑗
𝑡𝑣̃𝑗,𝑦

𝑡  (6) 

 5.  Fuzzification: For each action 𝑎𝑖
𝑡−1 = (𝑥𝑖

𝑡−1, 𝑦𝑖
𝑡−1, 𝑤𝑖

𝑡−1, ℎ𝑖
𝑡−1) in 𝐴𝑡−1, construct the fuzzy subset 𝑀̂𝑖

𝑡 of 

motion vectors in 𝑀̃𝑡 with respect to new reference point (𝑥̃𝑗,𝑠𝑟𝑐
𝑡 , 𝑦̃𝑗,𝑠𝑟𝑐

𝑡 )  

 
𝑀̂𝑖

𝑡 = {𝑚𝑗
𝑡 ∈ 𝑀̃𝑡|𝑥𝑖

𝑡−1 −
𝑤𝑖

𝑡−1

2
≤ 𝑥̃𝑗,𝑠𝑟𝑐

𝑡 ≤ 𝑥𝑖
𝑡 − 1 +

𝑤𝑖
𝑡−1

2

∧ 𝑦𝑖
𝑡−1 −

ℎ𝑖
𝑡−1

2
≤ 𝑦̃𝑗,𝑠𝑟𝑐

𝑡 ≤ 𝑦𝑗
𝑡−1 +

ℎ𝑖
𝑡−1

2
}

 (7) 

 with membership values given by  

 𝜇𝑀̂𝑖
𝑡(𝑚𝑗

𝑡) = 𝑚𝑖𝑛{𝜇𝑣𝑥
(𝑣̃𝑗,𝑥

𝑡 ), 𝜇𝑣𝑦
(𝑣̃𝑗,𝑦

𝑡 )} (8) 

 where 𝑣̃𝑗,𝑥
𝑡  and 𝑣̃𝑗,𝑦

𝑡  are the fuzzy components of the motion vectors 𝑚𝑗
𝑡 in 𝑀̃𝑡 with membership values given by 

the Gaussian membership functions 𝜇𝑣𝑥
(. ) and 𝜇𝑣𝑦

(. ), respectively. The mean and standard deviation of the 

Gaussian function are computed as the mean and standard deviation of the x and y components of motion vectors 

in the event box given in eq. (7).  

 6.  Defuzzification: For each fuzzy subset 𝑀̂𝑖
𝑡, the defuzzification is done and the defuzzified motion vector is 

computed as:  

 𝑚𝑗
𝑡∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑚𝑗

𝑡∈𝑀̂𝑖
𝑡{𝜇𝑀̂𝑖

𝑡(𝑚𝑗
𝑡)} (9) 

which is the motion vector for which the membership function value is maximum, and its x and y components are 

denoted by 𝑣̃𝑗,𝑥
𝑡∗  and 𝑣̃𝑗,𝑦

𝑡∗ .  

7.  Prediction the new event bounding box 𝑎𝑖
𝑡 = (𝑥𝑖

𝑡 , 𝑦𝑖
𝑡 , 𝑤𝑖

𝑡 , ℎ𝑖
𝑡) in 𝐴𝑡 by executing a shift operation on the center 

of the corresponding previous event box 𝑎𝑖
𝑡−1 utilizing the defuzzified values of the motion vector components in 

𝑀̂𝑡:  

 
𝑥𝑖

𝑡 = 𝑥𝑖
𝑡−1 + 𝑣̃𝑗,𝑥

𝑡∗ , 𝑦𝑖
𝑡 = 𝑦𝑖

𝑡−1 + 𝑣̃𝑗,𝑦
𝑡∗ ,

𝑤𝑖
𝑡 = 𝑤𝑖

𝑡−1, ℎ𝑖
𝑡 = ℎ𝑖

𝑡−1
 (10) 

 The aforementioned procedure is applicable to video codecs utilizing both P and B frames. Following the 

rescaling of motion vector components in step (b), a 𝜋-rotation operation is executed on the vectors in P. This 

ensures that both P and B frames have vectors aligned in the same direction, allowing for analogous processing 

in the subsequent computational steps. 

3.5. Data Association by Hungarian Method 

The Hungarian method is used to the process of assignment of predicted action 𝐴𝑖
𝑡+𝑘 to detected action 𝐷𝑗

𝑡+𝑘 

optimally with the cost 𝐶
𝐴𝑖

𝑡+𝑘𝐷𝑗
𝑡+𝑘  of assignment of predicted action 𝐴𝑖

𝑡+𝑘 to detected action 𝐷𝑗
𝑡+𝑘 being measured 

in terms of Intersection-over-Union (IoU) of the bounding boxes of 𝑖𝑡ℎ action 𝐴𝑖
𝑡+𝑘 and 𝑗𝑡ℎ action 𝐷𝑗

𝑡+𝑘. Thus, the 

cost matrix is given as: 
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𝐶
𝐴𝑖

𝑡+𝑘𝐷𝑗
𝑡+𝑘  = -IoU of bounding boxes of 𝐴𝑖

𝑡+𝑘 and 𝐷𝑗
𝑡+𝑘, 

where the minus sign signifies minimization of cost (= -IoU), i.e. maximization of IoU. This algorithm filters out 

matches with low similarity based on the specified threshold, ensuring that only pairs with low costs (high 

similarity) are considered as valid matches. The algorithm returns the matched pairs, unmatched predicted actions, 

and unmatched detected actions. The matched pairs are used for updated actions shown in the Fig.1.  

 

Figure 1: Architecture diagram of the proposed FMVCNN 

  

a. b. 

Figure  2: Sample video frames: (a) MPEG-4 (motion vectors in red (for P)), (b) H.264 (motion vectors in red 

(for P) and green (for B)). 

 

 

Figure  3: An inter-coded macroblock (solid border) in MPEG-4/H.264 P frame at time t features a motion 

vector 𝑣𝑗
𝑡 , which directs to a sub-image exhibiting similar characteristics in the preceding frame at 𝑡 − 𝑠𝑗

𝑡. In 

H.264, macroblocks utilize motion vectors that direct to a corresponding sub-image at 𝑡 + 𝑠𝑙
𝑡 in the subsequent 

frame. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 04 (2025) 

__________________________________________________________________________________ 

391 

4. Results and Discussion 

4.1. Dataset 

The proposed FMVCNN approach for fall event identification is implemented on publically accessible benchmark 

fall event video datasets, specifically Le2i [20], UR [21], and Multiple Cameras [23]. The attributes of these 

datasets are presented in Table 1. Le2i contains 143 video clips depicting fall events and 48 video clips depicting 

non-fall events, occurring across four scene types:residential space, coffee shop, workplace, and classroom. The 

dataset of Multiple Cameras includes 22 fall events along with 2 mixed daily occurrences. The view 

synchronization of videos from Multiple Cameras can used for 3D scene reconstruction for detection of fall events. 

The UR Dataset consists of films captured using the Kinect sensor, resulting in synchronized recordings of RGB 

and depth data. The recognition velocity is assessed in frames per second (FPS). The training and testing sets are 

created from the benchmark datasets in an 80:20 ratio. The proposed FMVCNN is executed on an Intel Core i7 

CPU (3.7GHz, 64 GB RAM) with Python programming on the Ubuntu 20.04 platform. The ablation study is 

conducted on the identical platform. Each sample video from the training set is divided into segments of 12 frames, 

consistent with previous relevant studies. Each frame is scaled to 255 x 255 for training the FMVCNN network. 

On average, an MPEG-4 video contains 11 P frames after each I frame, and an H.264 video comprises 11 P/B 

frames succeeding each I frame. A sample video in the test set has 15 clips, with each clip consisting of a 12-

frame sequence, specifically one I frame followed by 11 P frames for MPEG-4, or 11 P/B frames for H.264. Each 

clip in the train/test set is cropped randomly from the videos containing the target actions in the benchmark 

datasets considered.  

Compute Resource Evaluation 

The estimated computational requirements of the proposed FMVCNN for Fall event action recognition are: 15.6 

GFLOPS and 7.0[M] parameters that are involved. During the inference stage, the execution time for frame 

loading and then motion vector extraction from frame is 𝑂(1.5𝑚𝑠/𝑓𝑟𝑎𝑚𝑒). The FMVCNN and its variants in 

the ablation study are trained using Google colab GPU (Tesla T4).  

4.2 Ablation Study 

The ablation study of the proposed FMVCNN involves the following four aspects:   

1. Fuzzification of set of motion vectors using Gaussian, Triangular, and Trapezoidal membership 

functions. 

2. Two currently popular codecs: MPEG-4 and H.264.  

3. Performance analysis by using three benchmark datasets, namely, Le2i, UR and Multiple Cameras, for 

implementation.  

4. Comparing the FMVCNN Model with its variants, that is TPH-YOLOv5 without fuzzification and 

YOLO variants.  

4.2.1 FMVCNN Variants with Different Fuzzification Methods 

In Table 2, the performance of the proposed FMVCNN implemented in MPEG-4 and H.264 compressed domains 

is evaluated, with a specific focus on comparing the different methods of fuzzification of motion vector 

components using Gaussian, Triangular, and Trapezoidal membership functions. Notably, it is evident that 

Gaussian fuzzification has yielded significant improvement over the other two fuzzification techniques. This 

enhancement can be attributed to its ability to capture the underlying distribution characteristics of motion vectors, 

which is crucial in the context of fall event detection in videos. Gaussian fuzzification, by modeling the motion 

vectors according to Gaussian distributions of the x, and y components, effectively accounts for the subtleties in 

motion patterns, leading to more accurate and robust fall detection results as compared to alternative fuzzification 

methods, in terms of F1-Score and speed(FPS).  

4.2.2 Compression Domain Variants 

The efficacy of FMVCNN (utilizing Gaussian, Triangular, and Trapezoidal fuzzification variations) is assessed 

across several codecs, specifically, (i) MPEG-4 (P frames) and (ii) H.264 (P/B frames), by computing F1-Score 

(%) and processing speed (FPS) for event detection. The results in Table 2 indicate that the proposed algorithm 
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exhibits superior performance in the MPEG-4 domain, achieving a higher F1-Score and speed compared to the 

H.264 domain. In H.264, the F1-Score exhibits a slight enhancement due to the Gaussian fuzzification version 

as compared to MPEG-4 with triangular and trapezoidal fuzzification variants, albeit with a corresponding 

decrease in speed. The detection speed of fall events in MPEG-4 video surpasses that of H.264 due to (i) the 

smaller macroblock size in H.264 frames compared to MPEG-4, and (ii) MPEG-4’s exclusive use of P frames, 

whereas H.264 incorporates both P and B frames, leading to increased motion vector computations for event 

box prediction in each frame. The observations from the experimental results are consistent across all three 

datasets examined. 

 

4.2.3 FMVCNN versus the State-of-the-art Methods 

In Tables 3, 4, and 5, the results of proposed FMVCNN are compared with that of the state-of-the-art methods 

implemented on UR, Multiple Cameras and Le2i. The ’-’ indicates that the corresponding results are not reported 

in the literature. The accuracy of action recognition is found to depend on the (i) model architecture, (ii) training 

dataset, and (iii) video clip size with/without compression. The tabulated experimental results show enhanced 

performance of FMVCNN in terms of recognition accuracy, model parameters, GFLOPS, and recognition speed. 

For the purpose of comparison, only the Gaussian fuzzification variant of the proposed FMVCNN is considered, 

since it has yielded superior results as compared to other fuzzification variants, which is observed in Table 2. 

The performance analysis of the proposed method for identifying fall event actions in comparison to other 

approaches using the UR dataset is presented in the Table 3, and that using Multiple Camera dataset in the Table 

4, also that using Le2i in the Table 5. It is observed that the proposed method has exhibited superior performance 

in terms of the performance matrix reported in the literature. 

Table  1: Overview of Video Specifications in Le2i [20], Multiple Camera [22], and UR [21] Datasets. 

Specification   Le2i [20]  Multiple Camera [22]  UR [21]  

Total Videos 191 192 70 

Videos with Falls 143 176 30 

Video Resolution 320 × 240 pixels 720 × 480 pixels 640 × 480 pixels 

Frame Rate (FPS) 25 30 25 

Scene Setting Indoor (individual) Indoor (individual) Indoor(individual) 

 

However, it is important to note that the above methods that are used for comparison in the Tables 3, 4 and 5 work 

on non-compressed domain which requires extra decoding, and hence it is more time-consuming and less suitable 

for real-time applications due to its reliance on non-compressed video data. The proposed FMVCNN method is 

evaluated in terms of F1-Score against prominent compressed domain techniques in Table 6, utilizing the UR, 

Multi Cameras, and Le2i fall event datasets for comparison. The proposed method is found to yield high F1-Score 

and exhibit robust performance across the three datasets. 

The findings of the fall event action detection in compressed domains, using the Le2i Dataset that encompasses 

solitary fall event scenarios, are illustrated in Fig. 4. Figure 4 illustrates the identification of ’walking’ (a) and 

’fallen’ (c) actions in the MPEG-4 domain, as well as ’walking’ (b) and ’fallen’ (d) actions in H.264, accompanied 

by the extraction of motion vectors. Figure 5 presents the sample results of fall event detection utilizing the Multi 

Camera dataset. Figure 5 illustrates the identification of ’walking’ (a), ’fallen’ (c) actions in the MPEG-4 domain, 

as well as ’walking’ (b) and ’fallen’ (d) actions in the H.264 format, accompanied by the extracted motion vectors. 

For the UR dataset, Figure 6 illustrates the identification of ’walking’ (a), ’fallen’ (c) in the MPEG-4 domain, as 

well as ’walking’ (b) and ’fallen’ (d) actions in H.264, accompanied by the extraction of motion vectors.  
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Table 2: The Lei2 Fall, Multiple Camera Fall, and UR Fall datasets were used to evaluate different versions of 

the proposed FMVCNN algorithm in MPEG-4 and H.264 formats. 

 

Dataset 

Proposed method FMVCNN F1-Score  

(%) 

Speed  

(FPS) Fuzzification variants Codec variants 

 

 

 

UR Fall Detection Dataset 

Gaussian Fuzzification MPEG-4 (P)  

H.264 (P, B) 

99.06  

96.25 

524.0  

405.0 

Triangular Fuzzification MPEG-4 (P)  

H.264 (P, B) 

95.00  

93.25 

482.0  

385.0 

Trapezoidal Fuzzification MPEG-4 (P)  

H.264 (P, B) 

96.25  

94.46 

425.0  

305.0 

 

 

 

Camera Fall Dataset Multiple 

Gaussian Fuzzification MPEG-4 (P) 

H.264 (P, B) 

97.01  

95.3 

502.0  

396.0 

Triangular Fuzzification MPEG-4 (P) 

H.264 (P, B) 

94.85  

93.04 

455.0  

325.0 

Trapezoidal Fuzzification MPEG-4 (P) 

 H.264 (P, B) 

93.25  

92.14 

405.0  

295.0 

 

 

 

Lei2Fall Detection Dataset 

Gaussian Fuzzification MPEG-4 (P) 

 H.264 (P, B) 

99.52  

95.21 

495.0  

325.0 

Triangular Fuzzification MPEG-4 (P) 

 H.264 (P, B) 

94.25  

92.23 

425.0  

296.0 

Trapezoidal Fuzzification MPEG-4 (P) 

H.264 (P, B) 

92.45  

90.43 

386.0  

254.0 

 

The proposed FMVCNN demonstrates superior performance compared to other prominent methods, achieving 

improvements in accuracy, sensitivity, specificity, F1-Score, and speed. Additionally, there has been a notable 

decrease in computational expenses measured in number of model parameters[M] and GFLOPS. 

4.3. Dataset 

Table 7 presents a performance comparison of five models, namely:   

 1.  Model I: The proposed FMVCNN (Motion vectors + TPH-Yolov5 + Fuzzy Logic)  

 2.  ModelII: TPH-YOLOv5 without fuzzification (Motion vectors+TPH-YOLOv5+ Mean/Median)  

 3.  Model III: YOLOv5 without fuzzification (Motion vectors + YOLOv5 + Mean/Median)  

 4.  Model IV: YOLOv8 without fuzzification (Motion vectors + YOLOv8 + Mean/Median)  

 5.  Model V: YOLOv9 without fuzzification (Motion vectors + YOLOv9 + Mean/Median)  

which are trained and tested on UR, Multiple Cameras, and Le2i Fall Detection Datasets. Notably, the Models II, 

III, IV and V use either mean or median variant as a tracker. Further, this comparison encompasses two distinct 

codecs: MPEG-4 and H.264. The results displayed in Table 7 yield several key observations.  

The Table 7 shows the comparison of performance of the proposed fuzzy inference based method FMVCNN 

(Model I) with that of the Models II-V based on different YOLO variants and non fuzzy approach. It is observed 

that the TPH-YOLOv5 with fuzzy inference for event box prediction (Model I) has yielded higher accuracy in 

terms of F1-Score as compared to the non-fuzzy approach based Models II-V. 

Further, it is significant to note that the advanced YOLO architectures YOLOv8 and YOLOv9 yield marginal 

increase in F1-Score, as compared to TPH-YOLOv5 (Model II), but at the cost of considerable decrease in speed, 

which makes these architectures unsuitable for real-time applications. This can be attributed to the fact that the 

TPH-YOLOv5 is light weight architecture compared to the advanced YOLOv8 and YOLOv9. Thus, the primary 

aim being the real-time action recognition in compressed videos, the proposed method FMVCNN, being the light-

weight and low cost in terms of GFLOPS and parameters, is suitable for real-time applications. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 04 (2025) 

__________________________________________________________________________________ 

394 

Table  3: An analysis of the performance of the proposed method for identifying fall event actions in 

comparison to other approaches using the UR dataset. 

Method/Author Domain Accuracy 

(%) 

F1-Score 

(%) 

Transformer-based (jointly fine-tuned, w/o 

oversampling) (2024) [10] 

Non-Compressed 91.3 89.73 

Transformer-based (jointly fine-tuned, w/ 

oversampling) (2024) [10] 

Non-Compressed 95.45 94.76 

DFFCV-FDC (2024)[11] Non-Compressed 96.36 92.72 

YOLO V4 (2023) [23] Non-Compressed 95.7 85.4 

Attention-guided LSTM (2023) [23] Non-Compressed 96.6 94.6 

Attention-guided Bi-LSTM (2023) [23] Non-Compressed 96.9 95.8 

Yue Wang et al. (2024) [12] Non-Compressed 89.99 90.02 

Khalili et al. (2022) [24] Non-Compressed 95 - 

Alam et al. (2023) [25] Non-Compressed 84.38 - 

Lin et al. (2022) [26] Non-Compressed 91.1 - 

Qian et al. (2022) [27] Non-Compressed 94.88 - 

Lian Wu et al. (2024) [15] Non-Compressed 88.5 - 

Proposed Motion vectors + TPH-Yolov5 + Fuzzy 

logic 

Compressed 99.6 99.06 

 

Table 4: Evaluation of the proposed method’s efficacy relative to alternative employing a multi-camera dataset. 

Method/Author Domain Accura

cy (%) 

F1-Score 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Attention-guided LSTM 

(2023) [23] 

Non-Compressed - - 91.8 94.8 

Attention-guided Bi-LSTM 

(2023) [23] 

Non-Compressed - - 92 96 

STFT and 1D-CNN (2024) 

[28] 

Non-Compressed 91 88 87 91 

CNN (2023) [29] Non-Compressed - - 66 95 

OpenPose-SVM (2021) [30] Non-Compressed - - 95 92.5 

DFFCV-FDC (2024) [11] Non-Compressed 96.82 95.45 - - 

Proposed Motion vectors + 

TPH-Yolov5 + Fuzzy logic 

Compressed 98.2 97.01 98.36 99.2 

 

The Table 7 shows the comparison of performance of the proposed fuzzy inference based method FMVCNN 

(Model I) with that of the Models II-V based on different YOLO variants and non fuzzy approach. It is observed 

that the TPH-YOLOv5 with fuzzy inference for event box prediction (Model I) has yielded higher accuracy in 

terms of F1-Score as compared to the non-fuzzy approach based Models II-V. 

Table 5: Comparison of the performance of the proposed Fall event action detection approach against other 

methods utilizing the Le2i dataset. 

Method/Author Domain Accuracy(%) FI-Score (%) 

Yue Wang et. al. (2024) [12] Non-Compressed 89.99 90.02 

Fall-GCN (2024) [31] Non-Compressed 98.50 - 

H. Eruder et. al. (2024) [31] Non-Compressed 98.95 98.95 

Jiangjiao Li et. al. (2024) [33] Non-Compressed  99.33 - 

Yuan et.al. (2022) [34] Non-Compressed 98.43 - 

Lian Wu et.al. (2024) [15] Non-Compressed 91.60 - 

Proposed Motion vector + TPH-Yolov5+ 

Fuzzy Logic 

Compressed 99.60 99.52 
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Table 6: Comparative analysis of the proposed fall event action detection method against state-of-the-art 

techniques in the compressed domain using the UR, Multiple Cameras, and Le2i datasets, focusing on F1 score 

 

Method UR Multiple 

Cameras 

Le2i 

HOF+MBH (C Vishnu et al.) (2021) [35] 97.1 - 99.1 

Deep Features (Mahta Darvish et al.) (2023) [36] 95 94 - 

MVCNN (Praveenkumar et al.) (2024) [37] 93.35 91.25 89.06 

Proposed Motion vectors + TPH-Yolov5+ Fuzzy logic 99.06 97.01 99.52 

         

  Table  7: Comparative analysis of the proposed FMVCNN approach for fall event action identification with its 

modifications. 

   

Fall 

Event 

Datase

t 

Model I 

(Proposed Model) 

 

Proposed Motion 

vectors +  

TPH-Yolov5+ Fuzzy 

logic 

 

Parameters[M]=7 

GFLOPs=15.7 

 

 Model II 

 

Motion  

vectors +  

TPH-

Yolov5+ 

Mean/Media

n) 

 

Parameters[

M] 

=7 

GFLOPs=15

.6 

Model III 

 

Motion  

vectors +  

TPH-

Yolov5+ 

Mean/Media

n) 

 

Parameters[

M]=7.2 

GFLOPs=16

.6 

Model IV 

 

Motion 

vectors + 

TPH-

Yolov8+ 

Mean/Median

) 

 

Parameters[

M]=11.1 

GFLOPs=28.

6 

Model V 

 

Motion vectors 

+ TPH-

Yolov9+ 

Mean/Median) 

 

Parameters[M]

=25.4 

GFLOPs=103.

2 

 

 Variants  

(Fuzzy, 

Domain) 

 

FI- 

Scor

e 

(%) 

Spee

d 

(FPS

) 

Variants 

(Mean 

/Median, 

Domain) 

FI- 

Scor

e 

(%) 

Speed 

(FPS) 

FI- 

Score 

(%) 

Spee

d  

(FPS

) 

FI- 

Score 

(%) 

Speed 

(FPS) 

FI- 

Scor

e 

(%) 

Speed  

(FPS) 

UR Gaussian 

MPEG-4 

(P) 

99.0

6 

524 Mean, 

MPEG-4 

(P) 

96.8 422 95.05 410 97.85 396 98.0

1 

305 

Gaussian 

H.264 

(P, B) 

96.2

5 

405 Median 

H264(P.B

) 

92.1

5 

 

162 91 152 94.25 168 95.1

5 

125 

Multi- 

Camer

a 

Gaussian 

MPEG-4 

(P) 

97.0

1 

502 Mean, 

MPEG-4 

(P) 

95.2

5 

319 93.25 302 96.45 256 96.5

8 

215 

Gaussian 

H.264 

(P, B) 

95.3 396 Median 

H264(P.B

) 

93.3 224 91.3 201 94.05 135 94.5

5 

110 

Le2i Gaussian 

MPEG-4 

(P) 

99.5

2 

495 Mean, 

MPEG-4 

(P) 

96.0

6 

408 91.06 396 97.95 310 98.2

5 

296 

Gaussian 

H.264 

(P, B) 

95.2

1 

325 Median 

H264(P.B

) 

91.2

1 

250 87.21 242 93.21 222 94.5

8 

155 
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a b 

 
 

c d 

 

Figure  4: Results obtained from the Le2i dataset: ’walking’ and ’fallen’ actions are presented in (a,c) 

MPEG-4 format and (b,d) H.264 format 

 

  
a b 

  
c d 

 

Figure 5: Results from the Multiple Cameras dataset: ’walking’/’fallen’ actions observed in (a,c) MPEG-4 

format and (b,d) H.264 format. 
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a b 

 
 

c d 

 

Figure  6: The UR dataset’s sample findings include "walking" and "falling" motions in (a,c) MPEG-4 and 

(b,d) H.264 

 

4.4 Limitation of Proposed Method 

The accuracy of FMVCNN on H.264 is slightly lower, and its speed of action recognition is slower compared to 

MPEG-4. The slow speed (measured in FPS) in H.264 for action recognition is attributed to the generation of a 

large number of motion vectors per frame. Notably, B-frames in H.264 contain approximately twice as many 

motion vectors as P frames, contributing to the overall decrease in speed. H.264 is lossy compression codec, with 

higher compression rate compared to MPEG-4, leading to greater loss of visual information. This information loss 

affects the important details like motion patterns, textures, and subtle changes in appearance features. H.264 uses 

quantization to represent colors and intensities with fewer bits. This quantization process often leads to noise and 

distortions in the image, which impact the accuracy of action recognition algorithms. 
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