
Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 46 No. 2 (2025)

1551

Combination of Artificial Intelligence and

Spl
1R. Jamuna, 2Bhavani Vanama, 3Ch.Shanthi, 4Annam Rupa, 5Mrs. Ashwini,

Assistant Professor, CSE (AIML), Keshav Memorial Engineering College,

Assistant Professor, CSE (AI&ML), Keshav Memorial Engineering College,

Assistant Professor, CSE, Keshav Memorial Engineering College,

Assistant Professor, Vignan's institute of management and technology for women,

CSE, Keshav Memorial Engineering College,

Abstract:

This paper presents a comprehensive comparative analysis of four prominent programming languages used in

Artificial Intelligence (AI) applications: Python, R, Java, and Julia. The evaluation focuses on key aspects such

as performance, language features, ease of use, scalability, library support, and suitability for various AI tasks,

including machine learning, data analysis, and scientific computing. The analysis also considers factors like

syntax readability, execution speed, the richness of the library ecosystem, and integration capabilities with

external tools. A practical use case involving the implementation of a linear regression task is included to

illustrate the differences among these languages. The goal of this study is to assist AI practitioners, researchers,

and developers in selecting the most appropriate programming language for their specific project requirements,

thereby enhancing both development efficiency and the performance of AI applications.

Keywords: artificial intelligence, programming languages.

Introduction:

Programming Languages In Artificial Intelligence (Ai)

Artificial Intelligence (AI) has become a transformative force across industries, and the choice of programming

language plays a crucial role in the development, performance, and scalability of AI systems. Different

languages offer varying strengths based on syntax, performance, library support, and application domain.

Key Artificial Intelligence Programming Languages

Artificial Intelligence (AI) development relies on a range of programming languages, each offering unique

strengths tailored to different aspects of AI such as machine learning, natural language processing, robotics, and

data analysis. Below are some of the key AI programming languages:

1. Python

Python have Simple syntax, vast community support, and a rich ecosystem of AI/ML libraries (like TensorFlow,

PyTorch, Scikit-learn, Keras).

Usecases used in python are:

 Machine learning, deep learning, NLP, computer vision, data science.

2. Java

Strengths: Platform independence, speed, scalability, and ease of debugging.

Usecases used in Java is:

 Large-scale enterprise AI applications, natural language processing, search algorithms.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 46 No. 2 (2025)

1552

3. C++

Strengths: High performance and control over system resources.

Usecases used in C++ is:

 Real-time AI systems, game development, robotics, and simulation engines.

4. Lisp

Historical relevance: One of the earliest languages used in AI research.

Strengths: Symbolic expression handling, rapid prototyping.

Usecases used in Lisp is:

 Expert systems, symbolic AI, research applications.

5. R

Strengths: Statistical computing, data visualization, and data analysis.

Usecases used in R is:

 AI research, predictive modeling, and data-heavy machine learning projects.

6. Julia

Strengths: High performance with the ease of a dynamic language, particularly strong in numerical computing.

Usecases used in Julia is:

: Scientific computing, large-scale AI applications.

7. Prolog

Strengths: Logic-based language ideal for rule-based AI and reasoning systems.

Usecases used in Prolog is:

 Expert systems, natural language understanding, theorem proving.

I. Functional programming

Functional programming is a programming paradigm centered around the use of pure functions and immutable

data. It treats computation as the evaluation of mathematical functions and avoids changing state or mutable data.

Core Concepts of Functional Programming

Functional programming is a paradigm that treats computation as the evaluation of mathematical functions and

avoids changing state or mutable data. Below are the key principles that define this approach:

1. Pure Functions

Functions that always produce the same output for the same input and have no side effects. They don't modify

any external state or variables.

Example:

python

defadd(a, b):

return a + b

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 46 No. 2 (2025)

1553

2. Immutability

Data once created cannot be changed. Any modification results in a new data structure. This helps prevent

bugs related to shared state in concurrent programs.

3. First-Class and Higher-Order Functions

Functions can be passed as arguments to other functions, returned as values from other functions, and

assigned to variables.

Example:

def square(x):

 return x * x

def apply_function(f, value):

 return f(value)

apply_function(square, 5)

4. Recursion

Functions that can take other functions as arguments or return functions as results.

Benefits of Functional Programming

• Improved Code Clarity: Pure functions and immutability lead to more predictable and easier-to-understand

code.

• Reduced Bugs: The absence of side effects and mutable state minimizes potential errors.

• Enhanced Testability: Pure functions are easier to test because their behavior is deterministic.

• Concurrency and Parallelism: Functional code can be easier to parallelize because it avoids shared mutable

state.

• Modularity and Reusability: Functions can be easily composed and reused in different parts of the

application.

Popular Functional Programming Languages

Haskell – Purely functional, with a strong emphasis on immutability and type safety.

Scala – Combines object-oriented and functional paradigms.

Elixir – Functional and concurrent, built on the Erlang VM.

Clojure – A modern Lisp dialect emphasizing immutability.

F# – A functional-first language on the .NET platform.

Languages like Python, JavaScript, and Java also support functional programming features, even though

they're not purely functional.

What programming language is best for AI? How to choose

There is no single “best” programming language for AI—the best choice depends on your goals, the type of AI

application you're building, and your experience level. Below is a breakdown to help you choose the most

suitable language based on your needs.

Conclusion Artificial Intelligence (AI) is a rapidly evolving field, and a strong foundation in programming is

essential before diving into AI development. In this article, we explore the top programming languages widely

used in the AI domain. However, choosing the right language depends on various factors, including developer

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 46 No. 2 (2025)

1554

preferences, specific project requirements, and the availability of supporting libraries and frameworks. Among

these, Python has emerged as one of the most widely adopted languages for AI, thanks to its rich ecosystem of

libraries and strong community support. To effectively navigate the dynamic landscape of AI, it's also important

to stay current with the latest technological advancements and trends in the field.

References:

1. geeksforgeeks.org/top-programming-languages-for-artificial-intelligence/

2. https://www.dfki.de/~neumann/publications/new-ps/ai-pgr.pdf

3. https://www.ardaconference.com/journals/scopus-indexed/paper-submission?jid=1242

4. https://www.ijfmr.com/research-paper.php?id=33616

5. https://www.ijset.in/wp-content/uploads/Data-Mining-Techniques-Cluster-Analysis.pdf

6. https://ijsret.com/wp-content/uploads/2025/03/IJSRET_V11_issue2_707.pdf

https://www.dfki.de/~neumann/publications/new-ps/ai-pgr.pdf
https://www.ardaconference.com/journals/scopus-indexed/paper-submission?jid=1242
https://www.ijfmr.com/research-paper.php?id=33616
https://www.ijset.in/wp-content/uploads/Data-Mining-Techniques-Cluster-Analysis.pdf
https://ijsret.com/wp-content/uploads/2025/03/IJSRET_V11_issue2_707.pdf

