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Abstract:- This review examines the integration of artificial intelligence (AI) with helmet-mounted thermal 

imaging systems to enhance victim detection during disaster response operations. The fusion of AI algorithms 

with thermal imaging technology has led to significant advancements in identifying and locating victims in 

environments with limited visibility, such as those affected by smoke, darkness, or structural obstructions. Recent 

developments include the deployment of smart helmets equipped with infrared cameras, real-time object 

recognition capabilities, and augmented reality displays, all designed to improve situational awareness for first 

responders. Field trials have demonstrated the efficacy of these systems in accelerating victim detection and 

improving navigation in complex disaster scenarios. The review also discusses the challenges associated with 

implementing these technologies, including issues related to power autonomy, equipment compatibility, and data 

processing requirements. Future research directions are proposed to address these challenges and to further 

integrate AI-driven thermal imaging solutions into standard emergency response protocols. 

Keywords: Artificial intelligence, helmet-mounted systems, thermal imaging, victim detection, disaster response, 

smart helmets. 

 

1. Introduction 

In the realm of emergency response, the imperative to swiftly locate and rescue victims in disaster-stricken 

environments is paramount. Traditional methods often confront limitations, particularly in scenarios characterized 

by low visibility due to smoke, darkness, or structural obstructions. To address these challenges, the integration 

of artificial intelligence (AI) with helmet-mounted thermal imaging systems has emerged as a transformative 

approach, enhancing the capabilities of first responders in victim detection and situational awareness. Recent 

advancements have led to the development of smart helmets equipped with a suite of sensors, including thermal 

cameras, radar, and inertial measurement units. These devices harness AI algorithms to process multispectral data 

in real-time, enabling the identification of human heat signatures and the mapping of complex environments.  

 

For instance, researchers at the National Robotarium in Edinburgh have collaborated with the Scottish Fire and 

Rescue Service to create a helmet that allows firefighters to navigate smoke-filled areas more effectively, 

significantly reducing the time required to locate victims. The incorporation of augmented reality (AR) displays 

further augments the functionality of these helmets by overlaying critical information onto the user's field of view. 

This feature provides real-time data on environmental conditions, team member locations, and navigational cues, 

thereby enhancing decision-making processes during high-stress operations. Moreover, the modular design of 

these systems ensures adaptability to various mission requirements, allowing for the customization of sensor 

arrays and processing units based on specific operational needs. Despite the promising capabilities of AI-

integrated helmet-mounted systems, several challenges persist. Issues related to power autonomy, data processing 

latency, and the integration of these technologies with existing protective equipment necessitate ongoing research 

and development. Furthermore, considerations regarding user ergonomics, system durability under extreme 
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conditions, and the standardization of interfaces are critical for the widespread adoption of these systems in 

emergency services. This review aims to provide a comprehensive analysis of the current state of AI-integrated 

helmet-mounted thermal imaging systems, examining their technological components, operational benefits, and 

the challenges associated with their deployment. By synthesizing recent research findings and field trial outcomes, 

the review seeks to inform future developments and facilitate the integration of these advanced systems into 

standard disaster response protocols. 

 

Despite the promising capabilities of AI-integrated helmet-mounted systems, several challenges persist. Issues 

related to power autonomy, data processing latency, and the integration of these technologies with existing 

protective equipment necessitate ongoing research and development. Furthermore, considerations regarding user 

ergonomics, system durability under extreme conditions, and the standardization of interfaces are critical for the 

widespread adoption of these systems in emergency services.  

 

 

Fig. 1: Representation of rate of accidents in two wheeler 

Figure 1 illustrates the incidence rate of accidents involving two-wheelers. A comparative analysis is presented 

among two-wheelers, pedestrians, and cyclists, revealing that the accident rate is significantly higher for two-

wheelers, as depicted in the graph. 

 

This review aims to provide a comprehensive analysis of the current state of AI-integrated helmet-mounted 

thermal imaging systems, examining their technological components, operational benefits, and the challenges 

associated with their deployment. By synthesizing recent research findings and field trial outcomes, the review 

seeks to inform future developments and facilitate the integration of these advanced systems into standard disaster 

response protocols. 

 

There are a few other studies surveying the Smart Helmet for Accident Detection. Ajithkumar [1]smart helmet 

integrates sensors and communication modules to detect hazardous conditions and alert emergency services, 

thereby mitigating the severity of accidents. This design exemplifies an innovative approach to proactive accident 

avoidance through real-time monitoring and intelligent response mechanisms. Kishan Dadhania[2]an IoT-based 

smart helmet designed to enhance the safety of industrial workers by continuously monitoring environmental 

factors and physiological conditions. Through real-time data transmission, the helmet enables prompt 

interventions, thereby reducing workplace accidents and improving overall safety standards.  

 

Divyasudha N [3]an IoT-enabled helmet system that enhances rider safety through real-time accident detection 

and emergency alerts. By integrating sensors like accelerometers and GPS with cloud connectivity, it offers an 

affordable solution to reduce road accidents and improve emergency response times. Pankaj Chitte[4]Equipped 

with sensors like alcohol detectors, GPS, and accelerometers, the helmet ensures the rider is sober and properly 

wearing it before starting the vehicle.  

 

In the event of an accident, it automatically sends location-based alerts to emergency contacts, thereby facilitating 

timely assistance and potentially reducing fatalities. Kiran Kumar [5] Roja [6] 

reviewed the paper "Smart Helmet Based Accident Detection and Notification System for Two-Wheeler 
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Motorcycles" introduces an IoT-enabled helmet that utilizes an accelerometer to detect accidents by monitoring 

deviations from normal conditions.  

 

Upon detecting a collision, the system promptly sends SMS and phone call alerts, along with the rider's location, 

to registered emergency contacts and nearby medical facilities, thereby facilitating swift assistance and potentially 

saving lives. Anantha kumar [7]the Mining Industry" introduces a helmet equipped with sensors to monitor 

hazardous gases like CO, SO₂, and NO₂, as well as temperature and particulate matter, thereby enhancing miner 

safety through real-time alerts. 

 

 Additionally, features such as helmet removal detection and collision sensing are incorporated to promptly notify 

supervisors of unsafe events, facilitating timely interventions and improving overall safety in mining operations. 

Sreenithy Chandran [8] Dr. S.Sekar[9]an IoT-enabled helmet designed to enhance miner safety by monitoring 

environmental hazards such as toxic gas concentrations, helmet usage, and potential head injuries. Utilizing 

sensors for gases like CO, SO₂, and NO₂, along with infrared and pressure sensors, the system provides real-time 

alerts to both miners and control rooms, facilitating prompt responses to unsafe conditions. 

 

Archana. D[10]a helmet system that employs a tri-axial accelerometer and GPS to detect accidents and transmit 

real-time alerts to emergency contacts via cloud services. By integrating a Wi-Fi-enabled microcontroller and 

RESTful APIs, the system ensures prompt and reliable communication, thereby enhancing rider safety through 

immediate incident reporting. 

 

Although prior research exists in this domain, it is often narrowly concentrated on specific aspects of AI-

Integrated Helmet-Mounted Thermal Imaging Systems for Victim Detection in Disaster Response Scenarios. This 

paper endeavours to address the existing research gap by adopting a more holistic perspective. The principal 

contributions of this study are delineated below: 

1). Proactive accident avoidance systems have been developed through the integration of sensors, enabling 

real-time detection and mitigating the severity of potential hazards before they escalate. 

2). The sensor integration in smart helmets allows for continuous surveillance of environmental and 

physiological conditions, facilitating timely interventions to enhance worker and rider safety. 

3). By incorporating real-time data transmission, these systems enable instantaneous responses to accidents, 

ensuring prompt intervention and potentially saving lives in critical situations. 

4). The incorporation of hazardous gas sensors in helmets for mining applications significantly mitigates 

risks by alerting workers to unsafe environmental conditions, thereby improving overall safety standards. 

5). The collaborative use of IoT technologies and cloud connectivity enhances the smart helmet's ability to 

detect accidents and send location-based alerts to emergency contacts, providing a comprehensive safety 

solution across diverse environments. 

The review of this paper is organized as follows: Section 2 provides an overview of the algorithms utilized in the 

proposed system. Section 3 discusses prevailing security technologies. Section 4 presents the systemarchitecture 

in detail. Section 5 explores the practical applications of the proposed approach. Finally, Section 6 concludes the 

study and outlines potential future work. 

2. Overview of Algorithms 

This section provides a concise overview of the principal algorithms employed in victim detection within AI-

integrated helmet-mounted thermal imaging systems. These methodologies are broadly categorized into 

supervised and unsupervised learning paradigms, contingent upon the presence or absence of classification labels 

within the input dataset. Supervised learning algorithms necessitate annotated data, relying on explicit labeling to 

guide the learning process. In contrast, unsupervised learning techniques are adept at discerning underlying 

patterns without prior knowledge of labels, making them suitable for exploratory data analysis. 
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2.1. YOLOV8 

YOLOv8, the latest iteration in the "You Only Look Once" family of object detection algorithms, represents a 

significant advancement in real-time computer vision tasks. Developed by Ultralytics, this model embodies the 

synthesis of architectural efficiency and predictive accuracy, positioning itself as a formidable framework for 

object detection, image segmentation, and classification applications. 

At its core, YOLOv8 employs a single-stage detection mechanism, whereby the entire image is processed in a 

unified forward pass through a neural network. This architecture enables the model to predict bounding boxes and 

class probabilities simultaneously, thereby drastically reducing the inference time compared to two-stage detectors 

such as R-CNN[11] and its derivatives. This architectural philosophy not only streamlines the computational 

pipeline but also renders the model highly amenable to deployment in real-time systems, such as autonomous 

vehicles and surveillance technologies. 

2.2. Fuzzy C-Means Clustering 

Adaptive Fuzzy C-Means (AFCM) Clustering represents a sophisticated extension of the classical Fuzzy C-Means 

(FCM) algorithm[12], designed to enhance the flexibility, accuracy, and robustness of unsupervised learning in 

contexts characterised by ambiguity and noise—particularly in fields such as medical imaging, pattern 

recognition, and thermal data interpretation. 

At its foundation, Fuzzy C-Means Clustering is a soft clustering technique wherein each data point is assigned a 

degree of membership to all clusters[13]. rather than being rigidly classified into a single group. This nuanced 

approach better reflects the inherent uncertainty present in real-world datasets, especially in cases where clear 

class boundaries do not exist. The FCM algorithm seeks to minimise an objective function based on the weighted 

distance between data points and cluster centroids, with weights determined by membership grades[14]. 

However, traditional FCM presupposes fixed parameters, including the number of clusters and the fuzzification 

coefficient, which often results in suboptimal performance in dynamic or heterogeneous environments. To 

surmount these limitations, Adaptive Fuzzy C-Means Clustering introduces several modifications that 

dynamically adjust algorithmic parameters in accordance with the underlying data characteristics. 

Moreover, AFCM often employs adaptive weighting schemes that modify the influence of each data point or 

feature dimension during the optimisation process. Such adaptivity allows the algorithm to place greater emphasis 

on informative features while diminishing the impact of outliers or irrelevant variables. In some implementations, 

the fuzzification exponent itself is made adaptive, varying in response to local data density or heterogeneity, thus 

offering a fine-tuned balance between cluster compactness and separation. 

The iterative optimisation of AFCM proceeds through the repeated updating of cluster centroids and membership 

degrees until convergence criteria—typically based on changes in the objective function—are satisfied. This 

process utilises methods akin to gradient descent, where the partial derivatives of the cost function with respect to 

memberships and centroids guide the parameter updates.[15].[16]. 

 

2.3. Convolutional Neural Networks (CNNs) 

 

Convolutional Neural Networks represent a distinguished subset of deep neural architectures, meticulously 

engineered to process and interpret data exhibiting a spatial or temporal structure, such as visual 

imagery[17].Rooted in the principles of biological vision, CNNs emulate the human visual cortex by 

hierarchically learning features from input data through a series of structured layers[18].At their core, CNNs are 

composed of convolutional layers, non-linear activation functions, pooling (subsampling) layers, and fully 

connected layers[19].The convolutional layer employs a set of learnable kernels or filters that systematically 

traverse the input tensor, executing discrete convolutional operations to extract localisedfeatures. This mechanism 

can be mathematically expressed as: 

 

Y(i,j) = (X *K)(i.j) = ∑ ∑ X(i+m,j+n) .K(m, n)----(6) 

                                  m  n 

 

where X signifies the input matrix, K denotes the convolutional kernel, and Y(i,j)) is the output feature map at 

spatial position (i,j).Following convolution, the incorporation of activation functions, such as the Rectified Linear 
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Unit (ReLU), introduces non-linearity into the network, thereby augmenting its capacity to model intricate and 

non-trivial relationships. Pooling layers, commonly implemented via max-pooling or average-pooling strategies, 

perform spatial downsampling, thereby reducing dimensionality, mitigating overfitting, and enhancing 

translational invariance[20]. 

The concluding segment of a CNN involves fully connected layers, wherein the multidimensional feature maps 

are flattened and subjected to a dense neural structure to facilitate classification, detection, or regression 

tasks.CNNs are celebrated for their exceptional proficiency in hierarchical feature extraction, progressively 

discerning elementary edges, textures, and shapes, culminating in the recognition of complex, abstract patterns. 

This renders them quintessential in a myriad of domains, including but not limited to computer vision, medical 

diagnostics, autonomous navigation, and remote sensing[21]. 

2.4. Thermal Gradient Flow(TGF) 

The Thermal Gradient Flow (TGF) algorithm is a sophisticated computational technique employed in the analysis 

of thermal imaging data, particularly within applications necessitating the detection of subtle temperature 

variations, such as in disaster response scenarios[22].. This method capitalises on the spatial derivatives of 

temperature distributions to enhance the identification of regions exhibiting significant thermal contrasts, thereby 

facilitating the detection of objects or individuals based on their thermal signatures.At its core, TGF involves the 

computation of the gradient of temperature across a thermal image. This gradient represents the rate of change of 

temperature with respect to spatial coordinates and is instrumental in highlighting edges and boundaries within 

the thermal field. By calculating the magnitude and direction of these gradients, the algorithm delineates areas 

where temperature changes abruptly, which often correspond to the contours of objects or human bodies[23]. 

The implementation of TGF commences with the acquisition of thermal images, wherein each pixel intensity 

corresponds to a specific temperature value. Subsequently, the algorithm computes the partial derivatives of 

temperature with respect to the horizontal and vertical axes, typically using finite difference methods. These 

derivatives yield the gradient components, which are then combined to ascertain the gradient magnitude and 

orientation at each pixel[24].Thermal Gradient Flow stands as a potent tool in the analysis of thermal imagery, 

offering enhanced capabilities for detecting and delineating objects based on temperature variations. Its 

application in disaster response underscores its practical utility, providing a means to locate individuals in 

challenging conditions where conventional imaging techniques may falter. Continued advancements in thermal 

imaging technology and computational methods are poised to further augment the efficacy of TGF in various 

critical applications [25].. 

2.5.  Thermal Voxel Integration 

Thermal Voxel Integration (TVI) represents an advanced computational methodology that amalgamates thermal 

imaging data with three-dimensional voxel-based models to enhance the detection and analysis of heat[26]. 

signatures within complex environments. This technique is particularly pertinent in applications such as disaster 

response, where identifying victims or heat sources amidst obscured or hazardous conditions is critical. 

At its core, TVI involves the discretisation of a spatial domain into a voxel grid—a three-dimensional array of 

volumetric pixels—each encapsulating thermal data corresponding to a specific region in space [27] [28]..  This 

voxelisation process facilitates the representation of thermal information in a structured format, enabling efficient 

analysis and manipulation of the data. By integrating thermal readings into this voxel framework, TVI allows for 

the reconstruction of detailed thermal profiles of the environment, capturing both surface and subsurface 

temperature variations[29]. 

The principal advantage of TVI lies in its ability to synthesise thermal data into a spatially coherent three-

dimensional model, thereby providing a more comprehensive understanding of the thermal environment[30]. This 

integration facilitates the detection of subtle thermal anomalies and supports more informed assessments in 

complex scenarios[31] [32]. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 2 (2025) 

__________________________________________________________________________________ 

1481 

However, the implementation of TVI is not without challenges. Accurate mapping of thermal data onto the voxel 

grid requires meticulous calibration and may be impeded by factors such as sensor noise, occlusions, and 

environmental variability[33]. Additionally, the computational demands of processing and rendering three-

dimensional thermal models necessitate robust hardware and optimised algorithms to ensure real-time 

performance[34]. 

3. Prevailing Security Technologies 

In the realm of disaster response, effective victim detection is paramount to reducing response times and enhancing 

the safety of both victims and first responders[35]. Among the prevailing security technologies, thermal imaging 

systems have become indispensable tools for locating victims in environments with limited visibility, such as 

smoke-filled buildings or areas with poor lighting conditions[36]. These systems, when integrated into helmet-

mounted devices, provide responders with the ability to remain mobile while monitoring heat signatures in real 

time[37]. By detecting temperature variations, thermal cameras allow responders to identify human figures 

through their body heat, even in conditions where traditional visual identification is not possible[38]. 

The integration of Artificial Intelligence (AI) with thermal imaging systems has ushered in significant 

advancements in the field. AI algorithms now possess the ability to analyse thermal data in real-time, 

distinguishing human heat signatures from other environmental anomalies. This capability drastically enhances 

the accuracy of victim detection, reducing the likelihood of false positives[39]. Moreover, AI-enabled systems 

can adapt to dynamic environments by continuously learning and improving based on prior data, thus offering 

greater efficiency in future disaster scenarios. The synergy between machine learning and pattern recognition 

within AI systems ensures precise identification and tracking of victims, even in complex and rapidly changing 

environments[40]. 

Table1: Comparison   of   different algorithm 

Ref Year Title Algorithm Advantages Drawbacks 

[41] 2023 Real-Time Person 

Detection in Wooded 

Areas Using Thermal 

Images from an Aerial 

Perspective 

YOLOv3 (You 

Only Look Once 

version 3) 

Offers real-time object 

detection with high 

accuracy and efficient 

processing suitable for 

aerial thermal imagery. 

Performance may 

degrade in densely 

occluded or low-

resolution thermal 

environments due to 

limited feature 

representation. 

[42] 2025 Infrared and Visible 

Image Fusion Techniques 

Based on Deep Learning 

Deep 

Convolutional 

Neural Network 

(DCNN)-based 

Fusion 

Facilitates the extraction 

of complementary 

features from infrared 

and visible modalities, 

thereby enhancing image 

detail and contrast. 

Requires substantial 

computational 

resources and large-

scale datasets for 

effective training and 

generalization. 

[43] 2023 Flash flood susceptibility 

mapping using a novel 

deep learning model 

based on deep belief 

network, back 

propagation and genetic 

algorithm. 

Deep Belief 

Network 

integrated with 

Backpropagation 

and Genetic 

Algorithm (DBN-

BP-GA) 

Enhances predictive 

accuracy by combining 

feature learning 

capabilities of DBNs with 

optimisation strength of 

genetic algorithms. 

Involves complex 

architecture and 

prolonged training 

time, potentially 

limiting scalability and 

real-time applicability. 
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4. Architecture 

 

Fig. 2: Architecture of the AI-integrated helmet-mounted thermal imaging system 

The architecture of the AI-integrated helmet-mounted thermal imaging system for victim detection in disaster 

response comprises several critical modules working in concert to ensure real-time, on-site situational 

awareness[48]. At its core, the system features a helmet-mounted thermal camera capable of capturing heat 

signatures from the environment, thus enabling the identification of human presence in visually obstructed 

conditions such as smoke, darkness, or debris. This thermal feed is processed instantaneously by an embedded 

edge AI processor, which utilises advanced machine learning algorithms to distinguish human thermal patterns 

from environmental anomalies. By performing data analysis at the source, the system significantly reduces latency, 

ensuring rapid detection and response. Furthermore, a sensor fusion module combines input from GPS, 

[44] 2022 Thermal Image Tracking 

for Search and Rescue 

Missions with a Drone 

Kernelised 

Correlation Filter 

(KCF) 

Enables fast and efficient 

object tracking in thermal 

imagery with minimal 

computational overhead. 

Exhibits reduced 

robustness under 

significant occlusion or 

abrupt motion changes, 

affecting tracking 

continuity. 

[45] 2024 UAV-based Post-disaster 

Damage Assessment of 

Buildings Using Image 

Processing 

Histogram of 

Oriented 

Gradients (HOG) 

with Support 

Vector Machine 

(SVM) 

Provides reliable feature 

extraction and 

classification for 

structural damage 

identification in post-

disaster scenarios. 

May struggle with 

complex backgrounds 

or varying illumination, 

leading to decreased 

detection accuracy. 

[46] 2017 An improved lightweight 

YOLOv5 algorithm for 

detecting strawberry 

diseases 

Improved 

Lightweight 

YOLOv5 

Achieves high detection 

accuracy with reduced 

model complexity, 

making it suitable for 

deployment on resource-

constrained devices. 

May exhibit diminished 

performance when 

detecting visually 

similar disease 

symptoms under 

variable lighting 

conditions. 

[47] 2022 An Enhanced YOLOv4 

Model With Self-

Dependent Attentive 

Fusion and Component 

Randomized Mosaic 

Augmentation for Metal 

Surface Defect Detection 

Enhanced 

YOLOv4 with 

Self-Dependent 

Attentive Fusion  

Improves detection 

precision for small and 

complex defects by 

integrating attention 

mechanisms and diverse 

data augmentation. 

Increases model 

complexity and training 

time, which may hinder 

real-time performance 

on standard hardware. 
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accelerometers, and gas detectors to enrich the contextual understanding of the scenario, enabling more accurate 

victim localisation and hazard identification[49]. 

In addition to real-time data processing, the system includes a robust communication interface that facilitates 

wireless transmission of alerts, victim locations, and thermal visuals to remote command centres or nearby 

responders via Wi-Fi, 5G, or Bluetooth. This ensures seamless coordination and enhances the effectiveness of 

rescue operations[50]. A cloud support mechanism provides extended functionality by archiving data for future 

analysis and allowing integration with broader emergency management platforms. Power efficiency is managed 

through an intelligent battery management system designed for prolonged field use. To further support the rescuer, 

a user interface—either through a heads-up display or audio feedback—delivers critical information without 

diverting attention from the rescue environment. Altogether, this architecture exemplifies a holistic and 

technologically sophisticated approach to enhancing disaster response efficacy through AI-driven thermal imaging 

solutions. 

5. Application 

 

1. Detects heat signatures through dense smoke and poor visibility. Helps firefighters locate trapped individuals 

quickly and safely. 

2. Identifies body heat under debris or rubble during earthquakes or building collapses. Increases the chances 

of finding survivors in inaccessible areas. 

3. Monitors toxic gases and environmental hazards like chemical spills. Alerts responders in real-time, 

enhancing operational safety. 

4. Assists in search-and-recovery missions in dangerous or unknown territories.AI enhances situational 

awareness and decision-making under stress. 

5. Multiple helmet data can be synchronized to give a real-time map of victim locations. Supports coordinated 

team efforts and strategic rescue planning. 

 

6. Conclusion 

In summation, the integration of Artificial Intelligence with helmet-mounted thermal imaging systems constitutes 

a profound technological advancement in contemporary disaster response operations. These intelligent systems 

afford first responders the capacity to detect victims expeditiously, even within visually restrictive environments 

such as smoke-laden interiors or nocturnal landscapes. By harnessing the computational efficacy of AI—

specifically in the domains of pattern recognition and real-time thermal data interpretation—these systems 

markedly augment the precision and speed of victim identification. Nevertheless, several impediments persist, 

including limitations in battery longevity, data processing latency, and the ruggedisation of devices for 

deployment in volatile settings. Notwithstanding these challenges, the prospective utility of such AI-enhanced 

technologies remains unequivocal. With sustained research and iterative refinement, these helmet-mounted 

solutions are poised to become indispensable apparatuses, underpinning more agile, informed, and life-preserving 

interventions in future humanitarian and emergency scenarios. 
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