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Abstract:- The evolution of intelligent automation in industrial domains has catalysed the necessity for advanced 

robotic systems capable of exhibiting human-like dexterity and situational awareness. This study delineates an 

AI-enhanced adaptive grasping framework meticulously engineered for industrial robots operating in complex 

and unstructured environments. The proposed system synergises deep convolutional neural networks for precise 

object detection and pose estimation with reinforcement learning algorithms that iteratively refine grasping 

policies through experiential feedback. Furthermore, the integration of multimodal sensory data—encompassing 

visual, tactile, and proprioceptive inputs—enables the robot to dynamically modulate its grasping strategy in 

accordance with fluctuating object properties, such as geometry, texture, and weight distribution. Empirical 

evaluations conducted in a simulated industrial milieu reveal a substantial enhancement in grasp reliability, 

manipulation efficiency, and task generalisability when juxtaposed with conventional methodologies. The 

research underscores the transformative potential of artificial intelligence in augmenting the autonomy, flexibility, 

and operational robustness of robotic manipulators, thereby paving the way for more resilient and adaptive 

manufacturing ecosystems. 
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1. Introduction 

 

The advent of the Fourth Industrial Revolution has engendered a profound transformation in the operational 

paradigms of manufacturing and logistics industries, with a pronounced emphasis on the integration of intelligent 

automation technologies. Among the most critical components of such transformative systems are industrial 

robots, whose capacity to perform repetitive and labour-intensive tasks with high precision has rendered them 

indispensable in modern production environments. However, the conventional deployment of robotic 

manipulators has long been constrained by their reliance on deterministic programming, inflexible task 

parameters, and limited environmental adaptability. These limitations are particularly evident in grasping and 

manipulation tasks, wherein traditional systems often falter when presented with objects of unfamiliar shapes, 

variable orientations, or diverse material properties. In real-world scenarios, such as bin picking, assembly, and 

packaging, these inadequacies can lead to substantial inefficiencies, elevated error rates, and increased system 

downtime. 

To overcome these challenges, recent advancements have witnessed the proliferation of artificial intelligence (AI)-

driven methodologies aimed at endowing robots with human-like perceptual and cognitive capabilities. In 

particular, the amalgamation of deep learning, computer vision, and reinforcement learning has emerged as a 

promising avenue for enhancing robotic grasping through adaptive mechanisms. Adaptive grasping refers to a 

robot’s ability to autonomously perceive its environment, interpret contextual cues, and modify its grasping 

strategy in real time to accommodate the specific characteristics of the target object. This level of responsiveness 

is made possible through the utilisation of convolutional neural networks (CNNs) for object recognition and pose 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 2 (2025) 

__________________________________________________________________________________ 

1430 
 

estimation, as well as reinforcement learning frameworks that iteratively refine control policies based on sensory 

feedback and task outcomes. 

Moreover, the incorporation of multimodal sensory systems—encompassing visual, tactile, and proprioceptive 

data streams—further augments the robot’s situational awareness, enabling it to make more nuanced and 

contextually appropriate decisions. These sensors provide critical information pertaining to object geometry, 

surface texture, compliance, and weight distribution, all of which are indispensable for executing robust and stable 

grasps.  

The AI-enhanced framework thereby transitions from a pre-scripted operational model to a learning-oriented 

paradigm wherein the robot acquires and continuously updates its manipulation competencies through experiential 

learning. 

 

Fig. 1: Detecting Robotic Grasps 

Fig. 1 illustrates implications of such innovations extend well beyond the confines of academic inquiry, offering 

tangible benefits for industrial stakeholders.  

Enhanced grasping accuracy and reduced task execution time translate into heightened productivity, while the 

ability to handle a broad spectrum of objects mitigates the need for task-specific programming or mechanical 

redesign. Furthermore, adaptive systems can accommodate process variability and unexpected perturbations, 

thereby improving the overall resilience and agility of automated production lines.  

This research, therefore, seeks to contribute to the growing body of knowledge surrounding AI-powered robotic 

systems by proposing and evaluating a novel adaptive grasping framework. Through rigorous experimental 

validation in a simulated industrial environment, the study aims to demonstrate the efficacy of the proposed 

approach in elevating the functional intelligence, operational flexibility, and real-world applicability of industrial 

robots. 

There are a few other studies surveying AI-driven adaptive grasping system that enables industrial robots to 

intelligently perceive, learn, and adjust their grasping strategies. Honglak Lee[1] uses deep learning techniques to 

enhance robotic grasp detection by accurately identifying optimal grasping positions in complex visual scenes. 

The approach significantly improves robotic manipulation by integrating convolutional neural networks for 

precise spatial feature extraction. Suhas Kadalagere Sampath[2]human-like robotic manipulation, focusing on the 

capabilities of dexterous robotic hands to emulate nuanced human motor skills. Emphasis is placed on 

advancements in control strategies, tactile sensing, and adaptive learning for refined object interaction. Olaf 

Ronneberger[3]  discussed precise biomedical image segmentation with limited training data.  

 

It emphasises the model’s encoder-decoder structure, enabling accurate delineation of complex anatomical 

features.Jianshu Zhou[4]robotic grasp detection, enabling machines to identify viable grasping points with high 

precision. The study underscores the efficacy of convolutional neural networks in interpreting visual data for 
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autonomous manipulation tasks.Igor Zubrycki[5]a test setup for multi-finger gripper control, utilizing the Robot 

Operating System (ROS) to facilitate seamless communication and integration.  

 

The system focuses on enhancing the precision and adaptability of robotic manipulation. Ran Qin[6]RGB-D grasp 

detection by leveraging depth-guided learning and cross-modal attention mechanisms to improve grasp prediction 

accuracy. The approach enhances the integration of visual and depth information. Mayada Abdalsalam [7] 

incorporates attention mechanisms and advanced U-Net architectures within generative grasping convolutional 

neural networks. The approach improves the model's ability to focus on critical regions, leading to more accurate 

and efficient grasp predictions in diverse environments. Douglas Morrison[8] is a real-time generative grasp 

synthesis framework that enables closed-loop robotic grasping through continuous feedback and dynamic 

adjustment. 

 

It emphasises the integration of perception and control, allowing robots to adaptively refine grasp strategies in 

unstructured environments. Carlo Alberto Avizzano[9], the fusion of robotics with computer-integrated 

manufacturing to optimise industrial automation and operational precision. It accentuates the role of intelligent 

robotic systems in streamlining production processes and fostering agile, data-driven manufacturing 

environments. Zhen Xie[10]robotic tactile grasping to enable hyper-personalised pick-and-place operations along 

production lines. It emphasises the integration of tactile feedback and machine learning to adapt grasp strategies 

to diverse object geometries and user-specific requirements[11]. 

 

Together, these technologies enable adaptive, precise decision-making in dynamic defense and surveillance 

environments. 

 

Although prior research exists in this domain, it is often narrowly concentrated on specific aspects of AI-enhanced 

adaptive grasping for industrial robots. This paper endeavors to address the existing research gap by adopting a 

more holistic perspective. The principal contributions of this study are delineated below: 

      1) Introduced deep learning methodologies to enhance robotic grasp detection by identifying optimal 

grasping configurations in visually complex scenarios, thereby advancing autonomous manipulation. 

      2) Reviewed advancements in human-like robotic manipulation using dexterous hands, with a focus on 

control strategies, tactile perception, and adaptive learning for emulating refined human motor skills. 

      3) Proposed a U-Net-based convolutional network for biomedical image segmentation, achieving high 

accuracy even with limited annotated data through an encoder-decoder framework. 

      4) Demonstrated the effectiveness of convolutional neural networks in robotic grasp detection, facilitating 

precise interpretation of visual input for autonomous grasp execution. 

      5) Developed a test bed for multi-finger gripper control using the Robot Operating System (ROS), enhancing 

system integration, precision, and real-time responsiveness in robotic tasks. 

      6) Employed depth-guided learning with cross-modal attention mechanisms to improve RGB-D grasp 

detection, enabling more robust perception and decision-making in cluttered environments. 

      7) Integrated attention mechanisms and enhanced U-Net architectures within generative grasping CNNs to 

improve focus on salient image regions, thus elevating grasp prediction accuracy. 

      8) Proposed a real-time generative grasp synthesis model that enables closed-loop robotic grasping, 

integrating perception and control for adaptive interaction in dynamic settings. 

      9) Investigated robotics within computer-integrated manufacturing, highlighting the potential of intelligent 

automation in increasing efficiency, precision, and agility in production workflows. 
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   10) Explored data-driven tactile grasping for personalised pick-and-place tasks, leveraging tactile sensors 

and machine learning to tailor robotic responses to varying object geometries and user needs. 

The review of this paper is organized as follows: Section 2 provides an overview of the algorithms utilized in the 

proposed system. Section 3 discusses prevailing security technologies relevant to autonomous surveillance. 

Section 4 presents the system architecture in detail. Section 5 explores the practical applications of the proposed 

approach. Finally, Section 6 concludes the study and outlines potential future work. 

2. Overview of Algorithms 

This section provides a concise overview of the core algorithms underpinning AI-enhanced adaptive grasping in 

industrial robotics. These algorithms are generally classified into model-based and data-driven approaches, each 

offering distinct advantages depending on the nature of the task and available data. Model-based methods rely on 

explicit physical and geometric models of the objects and the robotic system, offering precise control in structured 

environments. In contrast, data-driven techniques, particularly those based on machine learning and deep learning, 

learn grasping strategies directly from data, enabling adaptability to complex, unstructured, or dynamic 

environments. Among these, supervised learning requires labeled grasping outcomes, while reinforcement 

learning and unsupervised learning enable autonomous skill acquisition without extensive manual annotation. 

Deep learning architectures, such as convolutional and graph neural networks, excel in extracting high-level 

representations from sensory inputs, thereby facilitating robust and flexible grasp planning in diverse industrial 

scenarios. 

2.1 Convolutional Neural Network ( CNN ) 

Convolutional Neural Networks represent a distinguished subset of deep neural architectures, meticulously 

engineered to process and interpret data exhibiting a spatial or temporal structure, such as visual imagery[12]. 

Rooted in the principles of biological vision, CNNs emulate the human visual cortex by hierarchically learning 

features from input data through a series of structured layers[13].At their core, CNNs are composed of 

convolutional layers, non-linear activation functions, pooling (subsampling) layers, and fully connected 

layers[14].The convolutional layer employs a set of learnable kernels or filters that systematically traverse the 

input tensor, executing discrete convolutional operations to extract localised features. This mechanism can be 

mathematically expressed as: 

 

Y(i,j) = (X *K)(i.j) = ∑ ∑ X(i+ m,j+n) .K(m, n)----(1) 

                                  m n 

 

where X signifies the input matrix, K denotes the convolutional kernel, and Y(i,j)) is the output feature map at 

spatial position (i,j).Following convolution, the incorporation of activation functions, such as the Rectified Linear 

Unit (ReLU), introduces non-linearity into the network, thereby augmenting its capacity to model intricate and 

non-trivial relationships. Pooling layers, commonly implemented via max-pooling or average-pooling strategies, 

perform spatial downsampling, thereby reducing dimensionality, mitigating overfitting, and enhancing 

translational invariance[15]. The concluding segment of a CNN involves fully connected layers, wherein the 

multidimensional feature maps are flattened and subjected to a dense neural structure to facilitate classification, 

detection, or regression tasks.CNNs are celebrated for their exceptional proficiency in hierarchical feature 

extraction, progressively discerning elementary edges, textures, and shapes, culminating in the recognition of 

complex, abstract patterns. This renders them quintessential in a myriad of domains, including but not limited to 

computer vision, medical diagnostics, autonomous navigation, and remote sensing[16]. 

2.2  YOLO ( You Only Look Once ) 
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The You Only Look Once (YOLO) algorithm represents a seminal advancement in the field of real-time object 

detection [17], renowned for its singular capability to perform object localization and classification in a single 

evaluation of the input image. Unlike traditional object detection paradigms that decompose detection into 

multiple stages—such as region proposal generation followed by classification—YOLO adopts a holistic 

approach by reframing object detection as a single regression problem. The image is partitioned into a fixed grid, 

and for each grid cell, the algorithm simultaneously predicts bounding box coordinates, objectness scores, and 

class probabilities, thereby dramatically reducing computational redundancy and latency. 

YOLO’s architecture is grounded in deep convolutional neural networks (CNNs), typically comprising a backbone 

feature extractor (e.g., Darknet) followed by detection heads that produce the final predictions. Each detection 

head outputs a vector comprising the bounding box parameters (x,y,w,h) a confidence score representing the 

probability of an object’s presence, and conditional class probabilities. The combined loss function optimizes both 

localization and classification accuracy, utilizing mean squared error for coordinate regression and cross-entropy 

loss for classification. This unified loss formulation enables the network to be trained end-to-end on full images, 

facilitating global reasoning about object positions and interrelations. 

One of YOLO's most distinguishing attributes is its extraordinary inference speed, rendering it particularly 

advantageous in time-sensitive applications such as autonomous vehicles, military surveillance, and aerial 

reconnaissance using drones. Moreover, the algorithm’s ability to generalize from natural scenes to unseen 

contexts underscores its robustness and versatility. Subsequent versions, such as YOLOv4 through YOLOv8, have 

introduced architectural enhancements including spatial pyramid pooling, anchor box optimization, and 

transformer-based modules, thereby improving detection accuracy while preserving computational tractability. In 

essence, YOLO epitomizes the convergence of precision and performance in real-time vision systems. 

2.3  Single Shot MultiBox Detector (SSD) 

The Single Shot MultiBox Detector (SSD)epitomises a paradigm shift in contemporary object detection 

methodologies by unifying the processes of object classification and localisation into a singular, streamlined 

computational pipeline. Unlike antecedent region-based approaches, SSD[18] obviates the necessity for 

exhaustive region proposal networks, thereby mitigating latency and enhancing throughput. This architectural 

innovation is realised through the deployment of a fixed ensemble of default bounding boxes of diverse aspect 

ratios and spatial scales, applied uniformly across hierarchical convolutional feature maps. These multi-scale 

representations confer robustness in detecting objects of varying dimensions and spatial configurations, a critical 

requisite for real-time surveillance and autonomous navigation systems. 

From a computational perspective, SSD is underpinned by a dual-objective optimization framework that 

concurrently minimizes both localization error and confidence loss. The algorithm employs a Smooth L1 loss 

function to regress the predicted bounding box coordinates towards their ground-truth counterparts, whilst a 

categorical softmax loss governs the accuracy of class predictions. The fusion of deep feature hierarchies with 

convolutional[19] predictors permits the network to extract semantically rich features at multiple abstraction 

levels. This end-to-end trainable architecture ensures that SSD maintains a judicious equilibrium between 

detection precision and inference speed, rendering it eminently suitable for embedded vision systems and mission-

critical domains such as border surveillance, aerial reconnaissance, and autonomous robotic patrols. 

2.4  Generative Grasping Convolutional Neural Network (GG-CNN) 

The Generative Grasping Convolutional Neural Network (GG-CNN)[20][21] represents a pivotal advancement 

in the domain of robotic grasp detection, particularly due to its capacity to perform real-time inference directly 

from depth images. Unlike conventional grasp detection algorithms that rely on time-intensive sampling of grasp 

candidates followed by classification, GG-CNN introduces a more efficient, fully convolutional framework that 
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enables the generation of dense pixel-wise grasp predictions. At the core of GG-CNN lies the principle of 

generative prediction, whereby the model does not merely identify isolated grasp candidates but instead produces 

a complete grasp map[22]. This map encapsulates three essential parameters for each pixel: grasp quality, grasp 

angle, and gripper width. The grasp quality score indicates the confidence or feasibility of executing a successful 

grasp at a given location, while the grasp angle denotes the orientation of the end-effector. The gripper width 

specifies the distance between gripper fingers required to enclose the object at that point. 

2.5 RCB-D  Fusion Algorithms: A Comprehensive Exposition 

In the realm of computer vision, RGB-D fusion algorithms represent a significant paradigm for the integration of 

visual (RGB)[23] and depth (D) information to enhance the performance of a variety of perceptual tasks, including 

object recognition, scene reconstruction, semantic segmentation, and robotic navigation. The term "RGB-D" 

refers to image data that encapsulates both colour (Red, Green, Blue) and depth information, typically captured 

via depth sensors such as Microsoft Kinect, Intel Real Sense, or LIDAR-equipped cameras[24]. The fusion of 

these complementary modalities facilitates the extraction of richer and more discriminative features, yielding 

improved robustness under diverse lighting conditions and complex spatial configurations[25]. 

At the core of RGB-D fusion lies the multimodal integration of two distinct types of data: the colour image and 

the depth map in times where H and W denote the height and width of the image, respectively[26]. The process 

of fusion may be approached at various levels—namely, at the raw data level (early fusion), feature level 

(intermediate fusion), or decision level (late fusion). Among these, feature-level fusion is most widely adopted 

due to its balance between computational efficiency and representational fidelity[27]. 

Recent advancements in deep learning have spurred the development of sophisticated fusion networks, such as 

dual-stream CNNs, residual fusion networks, and Transformer-based architectures[28]. A dual-stream 

architecture comprises two parallel networks—each dedicated to one modality—converging at a fusion point, 

often followed by joint processing via shared layers[29]. Residual fusion strategies integrate the fused features 

with skip connections to preserve spatial information, while Transformer-based models leverage cross-modal 

attention to capture long-range dependencies between RGB and depth features[30]. 

2.6 Deep Q-Networks ( DQN ) 

Deep Q-Networks (DQN) represent an advanced reinforcement learning algorithm that integrates Q-learning with 

deep neural networks, addressing challenges posed by large or continuous state spaces, such as those found in 

images or intricate environments. In classical Q-learning, the Q-value function is stored in a table, which is 

effective for small-scale problems but becomes inefficient for high-dimensional inputs[30].DQN leverages a deep 

neural network to approximate the Q-value function, enabling the agent to process complex state spaces. The 

network is trained via experience replay, where the agent stores its previous interactions in a replay buffer and 

samples random mini-batches to mitigate correlations and enhance learning stability. Additionally, DQN employs 

a target network, which is updated less frequently to further stabilise the training procedure[31]. 

Table 1:Comparison of Different Algorithms 
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Fig. 2: The Flowchart of the Efficient Grasp framework comprises three principal phases: feature 

extraction, contact point generation, and inverse kinematics (IK) computation. 

 

    Ref Year Title Algorithm Advantages Drawbacks 

 

[32] 

 

2022 

Golden wheel spider-

inspired rolling robots 

for planetary exploration 

Bio-inspired 

locomotion 

control algorithm 

Enhances mobility over 

uneven extraterrestrial 

terrains through adaptive 

rolling motion. 

Limited stability and 

control during rapid 

directional changes. 

 

[33] 

     

2024 

Biomimetic soft-legged 

robotic locomotion, 

interactions and 

transitions in terrestrial, 

aquatic and multiple 

environments. 

Central Pattern 

Generator (CPG)-

based control 

algorithm. 

Facilitates smooth and 

adaptable gait transitions 

across diverse 

environmental 

conditions. 

Complex parameter 

tuning is required to 

maintain stability 

and efficiency in 

varying terrains. 

 

[34] 

     

2023 

Digital twin-enabled 

grasp outcomes 

assessment for unknown 

objects using visual-

tactile fusion perception 

Visual-tactile 

fusion with deep 

learning-based 

digital twin 

modelling. 

Enables precise grasp 

assessment for unfamiliar 

objects through 

multimodal sensory 

integration. 

High computational 

complexity and data 

dependency hinder 

real-time 

deployment. 

 

[35] 

    

2023 

A YOLO-NL object 

detector for real-time 

detection  

 

YOLO-NL (You 

Only Look Once 

with Non-Local 

attention) object 

detection 

algorithm. 

Achieves real-time object 

detection with enhanced 

contextual awareness via 

non-local features. 

Increased 

computational 

overhead due to the 

integration of non-

local attention 

mechanisms. 

 

[36] 

     

2024 

Customizable 6 degrees 

of freedom grasping 

dataset and an interactive 

training method for graph 

convolutional network 

Graph 

Convolutional 

Network (GCN)-

based grasping 

algorithm. 

Enables precise 6-DoF 

grasp prediction through 

spatial relationship 

learning in point cloud 

data. 

Requires extensive 

annotated datasets 

and is sensitive to 

variations in object 

geometry. 

 

[37] 

    

2025 

EfficientGrasp: A 

Unified Data-Efficient 

Learning to Grasp 

Method for Multi-

fingered Robot Hands 

Data-efficient 

deep 

reinforcement 

learning 

algorithm. 

Achieves high grasping 

performance with 

minimal training data, 

enhancing learning 

efficiency. 

May exhibit reduced 

generalisability 

when encountering 

highly novel object 

configurations. 
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In the initial phase, feature extraction, salient features of both the target object and the gripper’s workspace are 

extracted using the PointNet architecture.[38]These two sets of features are subsequently concatenated to form a 

unified representation, which is then input into a pre-trained Point-wise Semantic Segmentation Network (PSSN) 

to accurately identify potential contact points on the object’s surface. 

 

3. Prevailing Security Technologies 

Numerous contemporary systems have been developed to advance AI-enhanced adaptive grasping in industrial 

robotics, aiming to facilitate precise and robust object manipulation within dynamic and unstructured 

environments. Among the most prominent is Dex-Net, a deep learning-based framework that employs a vast 

repository of synthetic data to train models for probabilistically robust grasp planning[39]. Similarly, GraspNet 

offers a comprehensive dataset and benchmark suite specifically designed to support deep grasp pose estimation 

and object interaction in cluttered scenes. In a parallel development, OpenAI’s Dactyl utilizes reinforcement 

learning to endow a multi-fingered robotic hand with dexterous manipulation skills, enabling it to adapt to varying 

object geometries through simulation-to-reality transfer. 

Industrial solutions such as ABB’s YuMi and FANUC’s collaborative robots seamlessly integrate artificial 

intelligence with high-resolution vision systems to achieve real-time object detection, spatial pose estimation, and 

adaptive grasping. These platforms frequently incorporate advanced neural architectures, such as convolutional 

neural networks (CNNs) and point cloud-based models like PointNet, in conjunction with reinforcement learning 

strategies to enhance adaptability and performance. Nonetheless, extant systems often encounter limitations[40].in 

terms of generalisability to novel objects, real-time computational efficiency, and seamless integration into 

complex, heterogeneous industrial ecosystems. 

Several advanced systems, such as Dex-Net and GraspNet, exemplify the integration of deep learning for precise 

and adaptive grasp planning. Robotic platforms like OpenAI’s Dactyl demonstrate dexterous manipulation 

through reinforcement learning and sim-to-real transfer[41]. 

4.  

5. Architecture  

Fig. 3: Architecture of AI-Enhanced Adaptive Grasping System for Industrial Robots 
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The diagram delineates a modular framework for robotic grasping, integrating perception, planning, and control 

mechanisms. Each constituent component contributes to a systematic and intelligent manipulation of objects 

within a robotic environment. 

I Sensory Input Layer 

The Sensory Input Layer comprises advanced sensing technologies that serve as the primary source of 

environmental data for the robotic system. The RGB-D camera captures both chromatic and depth information, 

thereby facilitating a comprehensive three-dimensional perception of the operational scene[42]. This dual-

modality sensing capability enables the system to discern not only the visual appearance but also the spatial 

configuration of surrounding objects. Complementing this, LiDAR (Light Detection and Ranging) is employed 

as a precision-based sensor that utilises laser emissions to construct accurate spatial representations of the 

environment[43]. Together, these sensors provide the foundational input to the Perception Module, thereby 

enabling downstream processes such as object recognition, localisation, and grasp planning to be executed with 

high reliability and contextual awareness. 

II Perception Module 

The Perception Module is entrusted with the interpretation of raw sensory data to extract semantically meaningful 

features essential for effective robotic manipulation. It focuses primarily on identifying object features, which 

encompass the visual and geometric properties of an object, including its shape, dimensions, texture, and 

orientation[44].In addition, the module determines grasp-relevant regions, which are specific areas on the object's 

surface deemed optimal for grasping. These regions are selected based on multiple criteria such as mechanical 

stability, accessibility by the robotic end-effector, and the material composition of the object[45]. By extracting 

and synthesising this information, the module ensures that the subsequent grasp planning process is both data-

driven and contextually informed, thereby enhancing the overall robustness and precision of the robotic grasping 

system[46]. 

III Grasp Planning Module 

The Grasp Planning Module functions as a critical intermediary that translates perceptual insights into actionable 

motor commands. It synthesises the extracted data from the perception layer to formulate a coherent and feasible 

grasping strategy[47].Central to this process is the determination of grasp configurations, which define a set of 

permissible poses and orientations for the robotic end-effector to ensure a stable and secure interaction with the 

target object[48].In parallel, the module computes the joint trajectories, which represent a continuous sequence of 

joint angles required to transition the robotic arm smoothly from its initial configuration to the intended grasping 

posture. Through this dual-level planning of spatial alignment and kinematic movement, the module effectively 

facilitates the transformation of perceptual data into precise physical actions, thereby enabling robust and adaptive 

object manipulation. 

 

IV Inverse Kinematics (IK) Solver and Control Module 

The Inverse Kinematics (IK) Solver and Control Module constitutes the final operational stage in the robotic 

grasping pipeline, wherein planned motions are translated into physical execution. The Inverse Kinematics Solver 

serves as a mathematical framework that determines the precise joint angles necessary for a robotic manipulator 

to position its end-effector at a desired location and orientation in three-dimensional space[49].Once these joint 

parameters are computed, the Control Module orchestrates the execution of corresponding motor commands, 

ensuring the realisation of the planned trajectory with a high degree of precision, stability, and temporal 

responsiveness.  

This stage culminates in the real-time actuation of the robot's mechanical components, thereby actualising the 

intended grasp and completing the perception-to-action loop with both accuracy and efficiency.This architecture 

exemplifies a cohesive and modular approach to robotic grasp synthesis, underpinned by robust perception, 
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intelligent planning, and precise control. It embodies the principles of autonomy, adaptability, and efficiency in 

robotic manipulation. 

 

6. Applications 

 

1. Automated Assembly Lines 

Robots can grasp parts of varying sizes, shapes, and materials with precision. Useful in electronics, automotive, 

and aerospace industries where parts often vary slightly. 

 

2. Warehouse Automation & Logistics 

Adaptive grasping enables robots to pick and place objects from bins or shelves. Essential in e-commerce and 

distribution centers (e.g., Amazon fulfillment). 

 

3. Quality Inspection and Sorting 

Robots can manipulate fragile or flexible items to inspect them without damage. Helps automated defect detection 

and sorting based on AI-identified criteria. 

5. Recycling and Waste Management 

Robots use AI to identify and grasp recyclable materials from mixed waste. Adaptive grasping handles irregular 

or deformed objects effectively. 

 

6. Laboratory Automation 

In research labs, robots can grasp pipettes, test tubes, or microplates. Ensures delicate handling and precision, 

minimizing human error. 

 

7. Conclusion 

 

AI-enhanced adaptive grasping represents a significant leap in the capabilities of industrial robotics, facilitating 

the manipulation of a diverse range of objects with varying shapes, sizes, and material properties. Through the 

integration of advanced artificial intelligence techniques, including machine learning, computer vision, and real-

time sensory feedback, these systems exhibit an unprecedented ability to dynamically adjust their grasping 

strategies in response to changing environmental conditions. This adaptability not only improves the accuracy and 

efficiency of robotic systems but also plays a crucial role in enhancing operational productivity while reducing 

the reliance on human intervention. As AI and sensor technologies continue to evolve, the potential of adaptive 

grasping to transform industrial processes and contribute to the broader vision of Industry 4.0 remains substantial. 

The ongoing development of these technologies is likely to drive further advancements in automation, creating 

new possibilities for their application across various sectors, including manufacturing, logistics, and material 

handling. 

 

References 

[1] Honglak Lee, Deep Learning for Detecting Robotic Grasps, 2013 

[2] Suhas Kadalagere Sampath, Review on human‐like robot manipulation using dexterous hands, 2022 

[3] Olaf Ronneberger, U-Net: Convolutional Networks for Biomedical Image Segmentation, 2015 

[4] Jianshu Zhou, A Soft-Robotic Gripper With Enhanced Object Adaptation and Grasping Reliability,2017 

[5] Igor Zubrycki, Test setup for multi-finger gripper control based on robot operating system (ROS), 2013 

[6] Ran Qin, RGB-D Grasp Detection via Depth Guided Learning with Cross-modal Attention, 2023 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 2 (2025) 

__________________________________________________________________________________ 

1439 
 

[7] Mayada Abdalsalam, Enhancing robotic grasping with attention mechanism and advanced UNet architectures 

in generative grasping convolutional neural networks, 2024 

[8] Douglas Morrison, Closing the Loop for Robotic Grasping: A Real-time, Generative Grasp Synthesis 

Approach, 2018. 

[9] Carlo Alberto Avizzano, Robotics and Computer-Integrated Manufacturing, 2024. 

[10] Zhen Xie, DataDrivenRoboticTactileGraspingforHyperPersonalization Line Pick-and-Place, 2023. 

[11] Darko Hercog, Simulation Model for Robotic Pick-Point Evaluation for 2-F Robotic Gripper, 2023. 

[12] Marut Deo Sharma, Performance Comparison of Parallel and 3-Finger Gripper Using Human Hand Grasping 

Taxonomies, 2024. 

[13] Zhikang Peng, The Enhanced Adaptive Grasping of a Soft Robotic Gripper Using Rigid Supports, 2024. 

[14] Zhenjia Xu, AdaGrasp: Learning an Adaptive Gripper-Aware Grasping Policy, 2021. 

[15] Xinquan Liang, Learning-based robotic grasping, 2023. 

[16] Dongying Tian, Adaptive Motion Planning for Multi-fingered Functional Grasp via Force Feedback, 2024. 

[17] Yang Yang, Attribute-Based Robotic Grasping with Data-Efficient Adaptation, 2025. 

[18] Yitaek Kim, Robust Adaptive Safe Robotic Grasping with Tactile Sensing, 2024. 

[19] Yilin Wang, Design of a spider inspired wheeled compliant leg for search mobile robots, 2024. 

[20] Islam Mohamed Zaida, Virtual prototyping of vision-based tactile sensors design for robotic-assisted 

precision machining, 2024. 

[21] Pengcheng Wei, Design of robot automatic navigation under computer intelligent algorithm and machine 

vision, 2022. 

[22] Zhihua Chen, Control strategy of stable walking for a hexa pod wheel-leggedrobot,2022. 

[23] Kang XU, High-adaption locomotion with stable robot body for planetary exploration robot carrying potential 

instruments on unstructured terrain. 2021. 

[24] Xiaoyan Chen, Three-dimensional object detection and forward-looking control strategy for non-destructive 

grasp of thin-skinned fruits, 2024. 

[25] Xudong Dong, A lightweight vehicle detection network model based on YOLOv5, 2022. 

[26] Baojiang Li, Interactive learning for multi-finger dexterous hand: A model-free hierarchical deep 

reinforcement learning approach, 2024. 

[27] Vitorino Biazi-Neto, FBG-based sensing system to improve tactile sensitivity of robotic manipulators 

working in unstructured environments, 2023. 

[28] Peixing Li, Adaptive control algorithm for quadruped robots in unknown high-slope terrain, 2024. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 2 (2025) 

__________________________________________________________________________________ 

1440 
 

[29] Yu Huang, A novel robotic grasping method for moving objects based on multi-agent deep reinforcement 

learning, 2024   

[30] Zhihua Chen, Flexible gait transition for six-wheeled legged robot with unstructured terrains, 2024. 

[31] Yuanxi Sun, Involute-arc-leg for Multi-legged Robot: High Stability and Low Energy Consumption, 2022. 

[32] A. Western, Golden wheel spider-inspired rolling robots for planetary exploration, 2022 

[33] Zhilin Yu, Biomimetic soft-legged robotic locomotion, interactions and transitions in terrestrial, aquatic and 

multiple environments, 2024. 

 [34] Zhuangzhuang Zhang, Digital twin-enabled grasp outcomes assessment for unknown objects using visual-

tactile fusion perception, 2023.  

[35] Yan Zhou, A YOLO-NL object detector for real-time detection, 2023. 

[36] Wanhao Niu, Customizable 6 degrees of freedom grasping dataset and an interactive training method for 

graph convolutional network, 2024. 

[37] Kelin Li, EfficientGrasp: A Unified Data-Efficient Learning to Grasp Method for Multi-fingered Robot 

Hands, 2025. 

[38] Zhenning Zhou, Learning accurate and efficient three-finger grasp generation in clutter with an auto-

annotated large-scale dataset, 2024. 

[39] Francisco Yumbla, An Open-Source 3D Printed Three-Fingered Robotic Gripper for Adaptable and Effective 

Grasping, 2025. 

[40] Weifei Hu, A grasps-generation-and-selection convolutional neural network for a digital twin of intelligent 

robotic grasping, 2022. 

[41] Marwan Mohammed, Comprehensive Review on Reaching and Grasping of Objects in Robotics, 2021. 

[42] Shuvo Kumar Paul, Object Detection and Pose Estimation from RGB and Depth Data for Real-time, Adaptive 

Robotic Grasping, 2021. 

[43] Kento Kawaharazuka, Adaptive Robotic Tool-Tip Control Learning Considering Online Changes in 

Grasping State, 2024. 

[44] Suhas Kadalagere Sampath, A Vision-Guided Deep Learning Framework for Dexterous Robotic Grasping 

Using Gaussian Processes and Transformers, 2022. 

[45] Rhys Newbury, Deep Learning Approaches to Grasp Synthesis, 2022. 

[46] Hanbo Zhang, Robotic Grasping from Classical to Modern: A Survey, 2024. 

[47] Zhikang Peng, The Enhanced Adaptive Grasping of a Soft Robotic Gripper Using Rigid Supports,2024. 

[48] Aiguo Chen, Adaptive Grasp Pose Optimization for Robotic Arms Using Low-Cost Depth Sensors in 

Complex Environments, 2025. 

[49] Yang Yang, Attribute-Based Robotic Grasping with One-Grasp Adaptation, 2021. 


