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Abstract 

This study presents a simulation-based analysis of cash transaction counters in a banking environment using 

queuing theory. The research aims to evaluate the performance of the current service system by analyzing key 

metrics such as customer waiting time, service time, and queue length. By applying queuing models and 

simulation techniques, the study investigates the optimal number of service counters required to achieve a 

balance between customer satisfaction and operational cost efficiency. The findings demonstrate that effective 

queuing simulation can significantly reduce customer waiting time while minimizing service costs, thereby 

enhancing the overall performance and efficiency of the bank’s operations. 
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Introduction 

In an era where operational efficiency and customer satisfaction are essential, the banking sector faces a constant 

challenge to manage service delivery effectively. One of the most visible aspects of customer interaction in 

banks is the cash transaction counter, where queuing and waiting time directly influence customer perception.  

Inefficient queuing systems lead to prolonged wait times, poor resource allocation, and increased service costs. 

To mitigate these challenges, mathematical modeling using queuing theory offers a powerful analytical tool to 

enhance service efficiency. 

Queuing theory, originally developed to analyze telephone networks, has matured into a broad field applicable 

across domains such as banking, healthcare, telecommunications, and manufacturing [2, 3]. It allows researchers 

and practitioners to model, analyze, and optimize systems where congestion and delays are typical. Specifically, 

the analysis of queues provides insights into customer flow, service utilization, and performance bottlenecks [6, 

7]. 
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1In banking, the relevance of queuing theory is well established. Several studies have demonstrated its effectiveness 

in reducing wait times and improving customer satisfaction by optimizing the number of service counters, adjusting 

staffing schedules, or redesigning service workflows [13, 14]. When coupled with simulation techniques, queuing 

theory becomes an even more potent approach.  Simulation allows for modeling of real-world complexities such 

as variable arrival rates, different service disciplines, customer impatience, and multitier service structures [9, 10]. 

Simulation-based queuing analysis is particularly valuable in dynamic environments where analytical models 

alone may fall short due to assumptions like steady-state behavior or exponential service times [1, 8]. 

Through simulation, banks can virtually test different configurations, policies, and resource allocations without 

disrupting operations. As shown in prior research, this technique is instrumental in evaluating “what- if” 

scenarios, estimating system performance under stress, and identifying cost-effective service structures [15, 16]. 

Another critical advantage of simulation is its applicability in multi-server and multi-phase systems, common in 

banking settings. For example, customers may need to interact with different counters or departments. These 

workflows can be accurately captured through discrete-event simulations, enabling better queue management 

strategies [11, 12]. 

Empirical studies have shown that balancing service cost and customer wait time is pivotal. Over- provisioning 

increases service costs, while under-provisioning leads to dissatisfaction and potential customer loss [17, 18]. 

Thus, an optimal trade-off is essential. Modern banks employ queuing simulation models to identify the number 

of tellers needed during peak and non-peak hours, automate resource scheduling, and monitor service 

performance indicators in real time [5, 19]. 

Additionally, queue simulation has proven to be an effective tool in service redesign. Whether it involves the 

introduction of token systems, self-service kiosks, or priority-based services, simulation offers evidence- based 

planning for such implementations [20, 21]. 

This paper focuses on analyzing the queuing system of a cash transaction counter in a typical bank using 

simulation. The primary objective is to assess current system performance and propose improvements in 

customer flow and service efficiency while minimizing operational cost. This case study-based approach 

contributes practical insights into how banks can harness queuing theory and simulation to optimize daily 

operations and elevate customer experience. 

1 Methodology 

This research employs a simulation-driven queuing theory approach to analyze and improve the performance of 

cash transaction counters in a banking setup. The methodology integrates classical queuing models, empirical 

data, and computational simulations. The process comprises several key stages: mathematical model 

formulation, parameter estimation, simulation design, and performance evaluation. 

1.1 Mathematical Model Formulation 

The queuing system at the bank is modeled as an M/M/s queue, a standard Kendall’s notation representing a 

system with: 

  Poisson arrival process with rate λ, 

  Exponentially distributed service times with rate µ, 

  s parallel and identical service channels (servers), 

  Infinite system capacity, 
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 First-Come-First-Served (FCFS) queue discipline. The traffic intensity (server utilization) is defined as: 

λ 

ρ = , with 0 < ρ < 1 for system stability. 

sµ 

The probability that there are zero customers in the system (idle state), P0, is given by: 

"
Σs−1 

(λ/µ)n (λ/µ)s 1  
#−1 

 

The expected number of customers in the system (L) and in the queue (Lq) are calculated as: 

(λ/µ)s · ρ λ 

Lq = P0 · 
s!(1 − ρ)2 , L = Lq + 

µ 

The expected waiting times in the queue (Wq) and in the system (W) follow Little’s Law: 

W = 
Lq 

, W = W + 
1 

q 
λ 

q 
µ 

These metrics form the theoretical foundation for evaluating system performance. 

1.2 Parameter Estimation 

Empirical data was gathered over a period of four weeks from a mid-sized bank branch. Observations included 

customer arrival times, service durations, inter-arrival time distributions, and number of available cash counters. 

From the data, the arrival rate λ and the service rate µ were estimated as follows: 

λ = 
Narrivals 

, µ = 
1 

 

Tobs t¯service 

During peak hours, we observed approximately λ = 25 customers per hour, and average service time t¯service 

= 2.5 minutes, hence µ = 24 customers/hour. These values were used in the simulation and analytical model. 

1.3 Simulation Model Design 

To complement the analytical model, a discrete-event simulation (DES) was constructed using Python’s 

SimPy library. The simulation models the lifecycle of customer entities, including: 

1. Random arrival according to a Poisson process. 

2. Queuing behavior under FCFS discipline. 

3. Exponential service distribution at each server. 

P0 = 
n=0 
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The simulation experiments include various configurations: 

  s = 2, 3, 4, 5: varying number of servers. 

  Priority queuing: giving preferential access to senior citizens. 

  Token-based queuing to control peak-hour congestion. 

Each configuration was simulated over 30 replications of a typical working day to obtain statistically 

stable performance measures. 

1.4 Performance Metrics 

The simulation and analytical results were evaluated using the following performance indicators: 

  Expected queue length (Lq), 

  Expected waiting time in queue (Wq), 

 

  System utilization (ρ), 

  Probability of waiting Pw 

 

 

(λ/µ)s 

 

s!(1−ρ) 

 

 

· P0, 

  Cost functions: 

Ctotal = Cw · Lq + Cs · s 

where Cw is the cost per unit of waiting time and Cs is the cost per server per unit time. 

This cost model allows us to explore trade-offs between customer satisfaction (minimizing Lq) and service cost 

(minimizing s). 

1.5 Validation and Model Accuracy 

To validate the simulation framework, results from the baseline configuration (two servers) were compared with 

actual field data. The simulated average waiting time and queue length were within 5% of the observed values, 

demonstrating the fidelity of the model. 

Moreover, simulation outputs for Wq and Lq were cross-verified with the M/M/s analytical values, confirming 

the consistency of the implemented model under theoretical assumptions. 

= 
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1.6 Tools and Computational Setup 

All simulations and analyses were performed using: 

 

  Python 3.11: Programming environment, 

 

  SimPy: Discrete-event simulation library, 

 

  NumPy/Pandas: Statistical data handling, 

 

  SymPy: Symbolic mathematics and queuing formula derivation, 

 

  Matplotlib: Graphical plotting of performance metrics. 

 

This integrated methodological framework ensures a robust, replicable, and scalable approach for 

evaluating queuing-based service systems in banks and other public-facing institutions. 

 

2 Results and Discussion 

The simulation model developed for the cash transaction counter was used to evaluate various scenarios with 

differing numbers of service counters, customer behaviors, and queuing configurations. The objective was to 

identify an optimal configuration that minimizes customer wait times while maintaining cost-effective 

operations. 

 

2.1 Baseline Scenario: Current Setup 

The baseline scenario was simulated using the current configuration of the bank, which includes two cash 

counters during all working hours. The results from 30 simulation runs indicate the following average 

performance metrics: 

  Average queue length: 7.8 customers 

 

  Average waiting time: 9.4 minutes 

 

  Server utilization: 94% 

 

  Probability of waiting: 89% 
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  Estimated daily waiting cost: $125 

 

  Estimated daily service cost: $180 

These results highlight that while the system operates close to full capacity, it leads to substantial waiting times 

and high waiting cost. 

2.2 Scenario 2: Addition of One More Counter 

Introducing a third counter reduced the average waiting time to 5.2 minutes and queue length to 4.1 customers. 

Server utilization dropped to 78%, and the probability of waiting fell to 62%. Despite the added service cost, 

the total cost decreased due to a significant drop in customer dissatisfaction-related expenses: 

  Waiting cost: $70 

 

  Service cost: $260 

 

  Total operational cost: $330 

 

This suggests a more balanced trade-off between cost and performance. 

 

2.3 Scenario 3: Token-Based Queue with Senior Citizen Priority 

A token-based system with priority for senior citizens during peak hours was also tested. The results showed a 

marginal improvement in customer flow: 

  Average waiting time for regular customers: 5.5 minutes 

 

  Average waiting time for priority customers: 2.7 minutes 

 

  Queue length: 3.9 customers 

 

  Utilization: 80% 

This configuration improved fairness and perceived service quality without significantly increasing 

operational costs. 

2.4 Trade-off Analysis: Cost vs. Efficiency 

The comparative analysis across scenarios revealed that increasing the number of counters improves 

performance but also raises service cost. However, a non-linear relationship exists between cost and efficiency. 

The marginal benefit of adding more counters diminishes beyond three servers. As shown in Table 1, the best 
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trade-off was achieved in Scenario 2, where service quality improved significantly with only a moderate 

cost increase. 
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Table 1: Performance Comparison Across Scenarios 

 

Scenario Avg Wait Time (min) Queue Length Total Cost ($) Utilization 

Baseline (2 counters) 9.4 7.8 305 94% 

3 Counters 5.2 4.1 330 78% 

Token + Priority 5.5 (2.7 for priority) 3.9 328 80% 

 

 

 

 
 Figure 1: Histogram of Customer Waiting Times Based on Simulated Queue System 

Figure 1 presents a histogram of customer waiting times collected from a simulated M/M/3 queuing system. The 

distribution of waiting times follows an exponential-like decay, where the majority of customers experience 

relatively short waits (under 5 minutes), while a smaller fraction faces longer delays. This right- skewed pattern 

is characteristic of Poisson arrival and exponential service time models. 

Such a distribution highlights two critical insights: 

 System Sufficiency: The bulk of service is handled efficiently, indicating that the chosen number of servers 

(3 in this case) adequately meets demand under average conditions. 

 Potential Bottlenecks: The existence of longer waiting times, albeit infrequent, points to transient congestion. 

These may arise during sudden surges in customer arrivals or temporary slowdowns in service. 

This figure is particularly useful for assessing service reliability. A narrower distribution centered around a 

lower mean would indicate a more robust service design, while a flatter, more spread-out distribution may signal 

the need for redesign or dynamic capacity adjustment. 
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Figure 2 illustrates the inverse relationship between the number of service counters and system utilization. As the 

number of servers increases, the workload per server (ρ = λ/(sµ)) decreases. This highlights the classical trade-

off in queuing systems: while increasing servers lowers utilization (and hence, congestion), it may also lead to 

underutilized resources, raising operational costs. 

In Figure 3, we analyze the composite cost structure of the queuing system, defined as: 

 

 

Figure 2: Server Utilization (ρ) vs. Number of Servers for a Fixed Arrival Rate (λ = 30) 
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Figure 3: Total Cost vs. Number of Servers, where Total Cost = Waiting Cost + Service Cost 

 

 

 

Ctotal = Cw · Lq + Cs · s 

where Cw = 5 USD/min is the waiting cost per customer and Cs = 50 USD/hour is the cost of operating each 

server. The figure shows a U-shaped cost curve, indicating that there is an optimal number of servers that 

minimizes the total cost. Too few servers increase queue lengths and waiting costs, while too many 

lead to underutilization and excessive service costs. This cost-performance analysis is critical for managerial 

decision-making. 

To further validate and visualize the performance of the queuing system, we analyzed the expected waiting time 

in the queue (Wq) across varying arrival rates and server configurations using the analytical M/M/s queuing 

model. 

 

 

Figure 4: Expected Waiting Time (Wq) vs. Arrival Rate for Various Server Configurations 

 

As shown in Figure 4, the waiting time increases non-linearly with the customer arrival rate for all configurations. 

For a system with only two servers, the queue becomes unstable (very high Wq) when the arrival rate approaches 

the total service capacity (sµ = 48). Adding more servers significantly reduces the waiting time, especially under 

high arrival rates. 

From the graph, we can observe: 
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 When the system load is low (arrival rate < 15), the difference in waiting time across server configurations is 

marginal. 

  As the arrival rate increases, the queueing delay escalates sharply for systems with fewer servers. 

 

  A system with 4 or 5 servers maintains a stable and acceptable waiting time even at higher arrival rates. 

This analysis confirms the theoretical intuition that service capacity must scale with demand to maintain 

system efficiency. It provides quantitative evidence to support managerial decisions regarding server 

deployment in customer-facing operations. 

2.5 Managerial Implications 

From a managerial perspective, the study offers valuable insights into optimizing bank operations. It shows that 

simulation-based queuing analysis enables data-driven decisions on resource allocation, leading to a tangible 

reduction in customer dissatisfaction and overall cost. Furthermore, integrating simple service design elements 

such as priority queues can improve fairness and customer satisfaction without requiring major investments.  

 

2.6 Conclusion, Limitations and Future Work 

While the current model incorporates dynamic arrival rates and multi-server configurations, it does not 

fully account for real-time adaptive customer behaviors such as reneging or jockeying. Future work could 

involve more advanced behavioral modeling and integration with real-time queue monitoring systems. 

Moreover, deploying reinforcement learning-based dynamic scheduling can further optimize the queuing system 

in changing environments. 

This study has demonstrated the effectiveness of simulation-based queuing analysis in improving the operational 

performance of bank cash counters. By modeling a real-world banking environment using queuing theory and 

discrete-event simulation, we successfully evaluated the impact of various configurations on service efficiency 

and operational costs. 

The analysis showed that the current setup with two service counters leads to high customer waiting times and 

elevated waiting costs, despite optimal server utilization. The introduction of a third counter, while increasing 

the service cost, significantly reduced queue lengths and average waiting time, yielding a better balance between 

cost and efficiency. Additionally, the implementation of a token-based queue system with senior citizen priority 

further enhanced service fairness and customer satisfaction with minimal cost impact. 

Our results support the strategic application of queuing theory and simulation as decision-support tools in 

banking operations. Managers can leverage such models to optimize resource allocation, streamline customer 

flow, and improve the overall quality of service. The study also highlights the diminishing returns in 

performance gains when increasing the number of service counters beyond a certain threshold, emphasizing the 

importance of cost-benefit analysis. 

There are several avenues for future research to extend and enrich the current work: 

 

 Incorporating Real-Time Data: Future models can be enhanced with real-time data integration, 

allowing adaptive simulations that reflect live banking conditions. 
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  Advanced Customer Behavior Modeling: Factors such as reneging (customers leaving the queue), 

jockeying (switching lines), and feedback mechanisms can be included for a more realistic simulation.  

  Multi-Objective Optimization:  Employing techniques like genetic algorithms or reinforcement 
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learning can help optimize multiple conflicting objectives, such as minimizing cost, queue length, and service 

time simultaneously. 

  Broader Sectoral Applications: While this study focused on banking, the framework can be applied to 

hospitals, airports, retail checkouts, and other service sectors where queue management is critical.  

 Integration with IoT and ML: Future work could integrate queuing simulations with Internet of 

Things (IoT) sensors and machine learning algorithms to provide predictive analytics and proactive service 

adjustments. 

This study provides a foundational framework for optimizing queuing systems in banks using simulation- based 

approaches. It not only contributes to the theoretical understanding of service optimization but also offers 

practical insights for real-world implementation in customer-focused service sectors. 
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