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Abstract: - This study presents a computational investigation of natural convection inside a 𝐶-shaped cavity 

featuring sinusoidally contoured horizontal walls. The investigation explores how different sinusoidal wall 

functions and Rayleigh numbers affect thermal and flow performance. Wall profiles examined include: 𝑦 =

sin(𝑥) , 𝑦 = sin(6𝑥), 𝑦 = 4 sin(𝑥), and 𝑦 = 4 sin(6𝑥), compared against a flat wall. The study finds that at 

low Rayleigh numbers (𝑅𝑎 ≤ 104), conduction dominates, while at higher 𝑅𝑎(≥ 105), convection becomes the 

principal mechanism. The results highlight the enhancement in heat transfer with increased wall amplitude and 

frequency, particularly for the 𝑦 = 4 sin(6𝑥) configuration. 
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1. Introduction 

Natural convection plays a crucial role in heat moves because it works on its own without needing extra 

energy, making it very efficient [1-3]. This process has gained a lot of attention from researchers and 

engineers. Heat transfer in enclosed spaces happens through natural, forced, or mixed convection. Natural 

convection happens because warm fluid becomes lighter and rise due to differences in temperature, which 

creates buoyancy forces. These forces are usually explained by the Boussinesq approximation [2, 4-6]. 

Research shows that buoyancy-driven flow inside enclosures can sometimes become unstable, but magnetic 

fields can help stabilize it [7]. Adding tiny particles called nanoparticles to fuids improves their heat 

transfer properties like conductivity and heat capacity. This is why natural convection is important in many 

systems [2, 6, 8-10]. For example, Sadeghi et al., [12]) studied a CuO/water nanofuid and found it improved 

heat transfer in cavities used in power plants while reducing energy loss. Natural convection also affects 

how electrical parts behave in thermal systems, impacting overall efficiency [13, 14]. Ghasemi [15] showed 

that in U-shaped cavities with nanofluids, increasing the Rayleigh number and nanoparticle amount 

increases heat transfer. 

Many factors affect natural convection performance, such as the Rayleigh number (Ra) [16], nanofuids [17-

20], and the shape of the enclosure [21]. For example, Ma et al., [22] studied how these factors affect heat 

flow in U-shaped cavities. Mohebbi et al., [23] looked at how obstacles inside C-shaped cavities change 

heat flow. Keramat et al., [24] found that using porous fins instead of solid fins in H-shaped cavities 

increased heat transfer by 60%. 

Other studies looked at how shape affects convection in different cavities: Moria [25] studied block shapes 

in L-shaped cavities; Varol et al., [26] looked at triangular cavities; and Natarajan et al., [27] studied 

trapezoidal cavities, finding uneven heating works better than even heating. 

Rahman et al., [28] analyzed heat transfer in ducts with heated cylinders, and Ismael et al., [29] studied 

ducts with moving walls, finding better heat transfer at higher flow rates. Yaseen and Ismael [30]) 

examined stresses in flexible and rigid baffles inside cavities with special fluids, showing flexible baffles 

handle stress better. 
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Hamid et al., [31] studied nanofuids in fin-shaped cavities and found heat transfer is strongest near corners. 

Prince et al., [32] compared different wall shapes in trapezoidal cavities and saw that rectangular shapes 

work best at low heat flow rates. 

Other research by Esfe et al., [33] and Cho and Chen [34] showed that changing wall shapes, like making 

them wavy, improves heat transfer. Sheikhzadeh et al., [35] found that heat source location matters 

depending on the Rayleigh number. Loenko et al., [36] discovered that faster oscillations in wall 

temperature improve heat and flow inside cavities. 

So far, no one has studied the effect of sinusoidal (wave-like) walls in C-shaped cavities. These cavities are 

important because of their unique shape and use in energy, food, and chemical industries. This study 

introduces sinusoidal patterns on the horizontal walls of a C-shaped cavity to see how factors like Rayleigh 

number, frequency, and amplitude affect heat transfer inside. 

2.  Physical Model and Methodology 

2.1. Geometry and Boundary Conditions 

A two-dimensional C-shaped cavity is examined, illustrated in Figure 1. The left vertical wall contains 

a centered hot block of dimension 𝑎 × 𝑏, while the top and bottom horizontal walls are sinusoidal. The 

cavity width and height are  𝐿 = 𝐻 = 1, and various sinusoidal wall profiles are tested: 

• Flat wall 

• 𝑦 = sin(𝑥) 

• 𝑦 = sin(6𝑥) 

• 𝑦 = 4sin(𝑥) 

• 𝑦 = 4sin(6𝑥) 

 

Figure 1: Diagram of the C-shaped cavity featuring sinusoidal variations along the walls 

2.2.  Mathematical Equations 

The problem assumes steady-state, laminar, incompressible flow governed by the Boussinesq 

approximation. The following dimensionless equations are solved using COMSOL Multiphysics: 

Continuity: 

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0 
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Momentum equations (x and y directions): 

𝑅𝑒 (𝑈
𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
) = −

𝜕𝑃

𝜕𝑋
+ ∇2𝑈 

𝑅𝑒 (𝑈
𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
) = −

𝜕𝑃

𝜕𝑌
+ ∇2𝑉 + 𝑅𝑎. 𝜃 

Energy equation: 

𝑈
𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
= ∇2𝜃 

Relevant dimensionless groups: 

Rayleigh number: 

𝑅𝑎 =
𝑔𝛽Δ𝑇𝐿3

𝜈𝛼
 

Prandtl number: 

𝑃𝑟 =
𝜈

𝛼
 

Boundary conditions reflect thermal insulation or fixed temperature, as per the wall role in the 

enclosure. 

 

2.3.  Numerical Method 

COMSOL Multiphysics was used to solve the 2D steady-state equations under laminar flow conditions. 

A mesh independence test confirmed grid convergence. Table 1, presents the average Nusselt number 

values corresponding to various mesh densities. 

Table 1: Grid Independence Test Results (𝑅𝑎 = 106) 

Mesh Elements Avg. Nu % Difference 

5,000 6.18 - 

12,000 6.42 3.88% 

26,000 6.51 1.40% 

30,000 6.52 0.15% 

 

3. Model Validation 

Model accuracy was verified against benchmark solutions from existing literature. Grid in dependence tests 

confirmed that a mesh density beyond 30000 elements produced negligible changes in the average Nusselt 

number (< 0.01% variation). 
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Figure 2: Model average Nusselt numbers compared to benchmark data across Rayleigh numbers 

 

4. Results and Discussion 

4.1. Impact of Rayleigh Number 

At 𝑅𝑎 ≤ 104, thermal conduction governs the system, with fuid velocity remaining minimal. As 𝑅𝑎 

increases to 105 and beyond, convection intensifies, forming complex vortical structures and 

promoting stronger thermal gradients. 

4.1.1. Velocity Field Analysis 

Figure 3, depicts how the Rayleigh number influences the velocity streamlines, while a detailed 

summary of these observations is provided in Table 2. 

 

 

Figure 3: Streamlines for 𝑦 = sin(𝑥) at various 𝑅𝑎 values 

Table 2: Streamline Observations for 𝑦 = sin(𝑥) 

Rayleigh Number Observations 

102 One symmetric vortex, conduction dominant 

104 Two symmetric vortices begin to appear 

106 Asymmetric structure, convection dominant, thin boundary layer 
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4.2.1. Temperature Field Distribution 

Figure 4, shows how the temperature distribution is affected by changes in the Rayleigh number, 

with a detailed summary provided in Table 3. 

 

Figure 4: Isotherms for 𝑦 = 4sin(6𝑥) 

  

Table 2: Isotherm Patterns for 𝑦 = 4sin(6𝑥) 

Rayleigh Number Observations 

102 Flat isotherms, minimal convection 

104 Tilted isotherms near hot wall 

106 Complex 𝑁 shaped thermal plumes 

 

4.2. Velocity and Temperature Distributions 

For walls defined by low-amplitude, low-frequency functions such as sin(𝑥) the flow structure is 

smoother, with larger, more coherent vortices. Increasing either amplitude or frequency disrupts these 

patterns, generating multiple smaller vortices and more chaotic thermal fields. Velocity and 

temperature distributions are shown in Figure 5, for various Rayleigh numbers. As 𝑅𝑎 increases, the 

flow becomes more convective and vortices intensify. 

 

Figure 5: Velocity and Temperature Contours at  𝑅𝑎 = 102, 104, 106 
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4.3. Effect of Wall Shape 

The wall profile 𝑦 = 4 sin(6𝑥) leads to the highest velocity gradients and heat transfer rates, attributed 

to strong boundary layer disruption. The enhancement is confirmed by the average Nusselt numbers, 

especially at higher 𝑅𝑎 values, as shown in Table 4. 

 

Table 4: Average Nusselt Number vs. Wall Shape at 𝑅𝑎 = 105 

Wall Shape Avg. Nu 

Flat 7.2 

sin(𝑥) 7.5 

sin(6𝑥) 7.9 

4sin(𝑥) 8.4 

4sin(6𝑥) 9.6 

 

5. Conclusions 

This numerical study concludes that sinusoidal modifications to wall geometry significantly influence 

natural convection in a C-shaped enclosure. Key findings include: 

• Conduction dominates at 𝑅𝑎 ≤ 104, while convection becomes dominant at higher 𝑅𝑎. 

• High-amplitude, high-frequency wall shapes improve heat transfer. 

• Velocity and thermal gradients increase with Rayleigh number. 

• Wall geometry significantly alters vortex structure and boundary layer behavior. 
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