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Abstract: Risk assessment models often rely on probabilistic frameworks to quantify and manage 

uncertainty. Choosing an appropriate probability distribution—whether discrete or continuous—is critical to 

accurately modeling risk in various domains such as finance, engineering, and healthcare. This paper presents 

a comprehensive comparative analysis of discrete and continuous probability distributions within the context 

of risk assessment. We examine the statistical properties, modeling flexibility, and computational efficiency 

of commonly used distributions, including the Binomial, Poisson, Normal, and Exponential distributions. 

Through simulation studies and real-world case applications, we investigate how the choice of distribution 

affects risk metrics such as Value-at-Risk (VaR), Conditional Value-at-Risk (CVaR), and expected 

shortfall. The results highlight scenarios where discrete models are more suitable due to event-based 

uncertainty, as well as cases where continuous models offer superior accuracy in capturing risk magnitudes. 

This study provides guidance for practitioners in selecting appropriate distributional frameworks to enhance 

the reliability and interpretability of risk assessment models. 
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1 Introduction 

Risk assessment is a fundamental process across various industries, including finance, engineering, healthcare, 

and environmental science, where it is essential to quantify and manage uncertainty effectively. Central to this 

process is the selection of appropriate probability distributions to model uncertain parameters and outcomes.  

The choice between discrete and continuous distributions significantly influences the accuracy, interpretability, 

and computational efficiency of risk models. 

Discrete probability distributions are utilized when the set of possible outcomes is countable. Common 

examples include the Binomial and Poisson distributions, which are often employed to model the number of 

occurrences of an event within a fixed number of trials or a specified time frame [1]. For instance, the Poisson 

distribution is frequently applied in modeling the number of defaults in a credit portfolio over a given period 

[2]. In reliability engineering, the Binomial distribution can model the number of component failures in a 

system [3]. 

Conversely, continuous probability distributions are appropriate for modeling variables that can assume an 

infinite number of values within a given range. The Normal and Exponential distributions are among the most 

commonly used in this category. The Normal distribution is particularly prevalent in financial modeling, 

where asset returns are often assumed to follow a Normal distribution [4]. The Exponential distribution is 

widely used in reliability engineering to model time-to-failure data [3]. 
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The selection between discrete and continuous distributions is not merely a matter of mathematical 

convenience but has profound implications for risk assessment outcomes. For example, Value-at-Risk (VaR) 

and Conditional Value-at-Risk (CVaR) are critical risk metrics in finance that are sensitive to the underlying 

distributional assumptions [5]. Mis-specifying the distribution can lead to inaccurate risk estimates and 

suboptimal decision-making. CVaR, also known as expected shortfall, provides a coherent risk measure that 

accounts for the tail risk beyond the VaR threshold, offering a more comprehensive view of potential losses 

[6]. 

Moreover, the properties of the chosen distribution affect the computational tractability of risk models. 

Continuous distributions often facilitate analytical solutions and are amenable to techniques such as 

differentiation and integration. In contrast, discrete distributions may require summation over potentially large 

state spaces, which can be computationally intensive [7]. Advanced computational methods, such as Monte 

Carlo simulations, are often employed to handle complex distributions and dependencies in risk assessment 

models [8]. 

In practice, the choice between discrete and continuous distributions should be guided by the nature of the data 

and the specific context of the risk assessment. For instance, when modeling the number of operational failures 

in a manufacturing process, a discrete distribution like the Poisson may be appropriate. However, for 

modeling the time until the next failure, a continuous distribution such as the Exponential would be 

more suitable. In environmental risk assessments, the choice of distribution can influence the estimation of 

pollutant concentrations and the assessment of associated health risks [9]. 

Furthermore, the convergence properties of algorithms used in risk assessment, such as the Expectation- 

Maximization (EM) algorithm, can be affected by the choice of distribution. The EM algorithm’s performance 

in finding maximum likelihood estimates depends on the underlying distributional assumptions [10]. Similarly, 

the stability of Markov Chain Monte Carlo methods is influenced by the properties of the chosen distributions 

[11]. 

This paper aims to provide a comprehensive comparative analysis of discrete and continuous probability 

distributions within the context of risk assessment models. By examining the statistical properties, modeling 

flexibility, and computational considerations of various distributions, we seek to offer insights into their 

appropriate application in different risk assessment scenarios. Through simulation studies and real-world case 

applications, we investigate how the choice of distribution influences critical risk metrics and overall model 

performance. 

The remainder of this paper is organized as follows: Section 2 reviews the fundamental properties of selected 

discrete and continuous distributions commonly used in risk assessment. Section 3 discusses the impact of 

distribution choice on risk metrics such as VaR and CVaR. Section 4 presents simulation studies and case 

applications illustrating the practical implications of distribution selection. Finally, Section 5 concludes with 

recommendations for practitioners on selecting appropriate distributions to enhance the reliability and 

interpretability of risk assessment models. 

2 Theoretical Background 

In order to compare discrete and continuous probability distributions effectively within risk assessment 

models, it is essential to understand their fundamental definitions, statistical properties, and the contexts in 

which they are commonly applied. This section presents an overview of key distributions, highlighting their 

characteristics, use cases, and relevance in modeling risk and uncertainty. 
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2.1 Discrete Probability Distributions 

Discrete probability distributions are suitable for modeling random variables that can take on a finite or 

countably infinite number of values. These are typically used when the modeled phenomenon involves count 

data or event occurrences. 

Binomial Distribution: The Binomial distribution models the number of successes in a fixed number of 

independent Bernoulli trials with the same probability of success p. Its probability mass function (PMF) is 

given by: 

P (X = k) =

  
n
 

pk(1 − p)n−k, k = 0, 1, . . . , n 

This distribution is widely used in quality control and reliability studies [3]. 

Poisson Distribution:  The Poisson distribution models the number of events occurring in a fixed 

interval of time or space under the assumption of constant rate λ and independence of events. The PMF is: 

e−λλk 

P (X = k) =, k = 0, 1, 2, . . . 

k! This distribution is appropriate for rare event modeling, such as insurance claims or system failures [2]. 

2.2 Continuous Probability Distributions 

Continuous distributions model random variables that can take any value within a given interval.  These are 

essential when measuring phenomena like time, weight, or financial returns. 

Normal Distribution:  Also known as the Gaussian distribution, the Normal distribution is 

fundamental in statistics due to the Central Limit Theorem. It is defined by its mean µ and standard 

deviation σ: 

  1  

f (x) = √
2πσ2 

exp 

(x µ)2 

— 
2σ2 

It is used extensively in modeling errors, returns, and other naturally occurring phenomena [4, 12]. 

Exponential Distribution: The Exponential distribution models the time between events in a Poisson 

process and is characterized by its rate parameter λ: 

f (x) = λe−λx, x ≥ 0 It is widely used in survival analysis 

and reliability modeling [13]. 

Gamma Distribution: The Gamma distribution generalizes the Exponential distribution and is defined 

for a shape parameter α and a rate parameter β. Its probability density function (PDF) is: 

βαxα−1e−βx 

f (x) = Γ(α) , x > 0 
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α 

The Gamma distribution is flexible for modeling skewed data, particularly in queueing theory and climatology 

[15]. 

2.3 Moments and Tail Behavior 

The choice of distribution often depends on its moment properties (mean, variance, skewness, and kurtosis) 

and tail behavior. For instance, heavy-tailed distributions such as the Lognormal or Pareto can better capture 

extreme risk scenarios compared to the light-tailed Normal distribution [19, 18]. 

Understanding these characteristics is essential for aligning the distributional assumptions of risk models with 

real-world data. In practice, goodness-of-fit tests and graphical methods such as Q-Q plots are used to evaluate 

distribution suitability [17]. 

In the next section, we will investigate how the use of discrete versus continuous distributions impacts the 

estimation and interpretation of risk metrics such as Value-at-Risk and Conditional Value-at-Risk. 

3 Impact of Distribution Choice on Risk Metrics 

Risk metrics such as Value-at-Risk (VaR), Conditional Value-at-Risk (CVaR), and expected shortfall are 

central to quantifying and managing uncertainty in various domains. The accuracy and reliability of these 

metrics depend critically on the choice of the underlying probability distribution used to model uncertain 

variables. 

3.1 Value-at-Risk (VaR) 

Value-at-Risk (VaR) is a quantile-based measure that estimates the maximum potential loss over a given time 

horizon at a specified confidence level. For a continuous distribution with cumulative distribution function 

(CDF) F (x), VaR at confidence level α is defined as: 

VaRα = inf{x ∈ R : F (x) ≥ α} 

In discrete distributions, calculating VaR requires identifying the smallest value x such that the cumulative 

probability meets or exceeds α: 

VaR(discrete) = min{x : 
Σ 

P (X = i) ≥ α} 

i≤x 

This discrete nature introduces step-like behavior in the VaR estimate, which may reduce resolution for risk 

reporting [18, 19]. 

3.2 Conditional Value-at-Risk (CVaR) 

Conditional Value-at-Risk (CVaR), also known as expected shortfall, represents the expected loss exceeding 

the VaR threshold. It addresses a major limitation of VaR—its inability to capture tail risk—by 

measuring the average of the worst losses beyond the VaR level [5, 6]. For a continuous loss distribution: 

CVaRα = E[X | X ≥ VaRα] 

In discrete settings, CVaR requires summing the tail probabilities, which can be computationally intensive 

when the number of possible outcomes is large. However, discrete models often allow for exact calculation 

when the support is finite [8]. 
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3.3 Tail Behavior and Distributional Impact 

The tail behavior of a distribution significantly affects the estimation of both VaR and CVaR. 

Distributions with heavy tails, such as the Lognormal or Pareto, yield higher estimates of risk compared 

to light-tailed ones like the Normal [19]. This discrepancy becomes critical in risk-sensitive applications 

such as banking and insurance. 

When using a Normal distribution to estimate VaR, the tails are underestimated if the actual data are skewed 

or heavy-tailed, leading to flawed risk estimates [18, 4]. In contrast, using a Gamma or Lognormal distribution 

better reflects asymmetry and tail risks often observed in real-world data [15, 17]. 

3.4 Practical Considerations 

From a modeling perspective, discrete distributions are more natural when modeling count-based risks, such as 

the number of defaults or component failures.  Continuous distributions are more suited to financial 

losses or time-based risks. Importantly, the selection should be guided by data characteristics, the nature of 

uncertainty, and computational considerations. 

Empirical studies suggest that misspecification of distributions can lead to underestimation of CVaR by more 

than 20% in heavy-tailed contexts [18, 19]. Therefore, model validation and distribution fitting should be 

integrated into the risk assessment process [9, 16]. 

3.5 Summary 

This section has highlighted the critical role of distributional assumptions in calculating and interpreting risk 

measures. The sensitivity of VaR and CVaR to tail behavior underscores the need for careful selection and 

testing of probability distributions. In the next section, we present simulation studies and case examples to 

demonstrate these effects using real-world data. 

4 Simulation and Case Studies 

To empirically evaluate the impact of distributional choice on risk assessment, we conduct simulation 

studies and analyze real-world data using both discrete and continuous probability models. The focus is to 

compare how selected distributions affect the estimation of key risk metrics such as Value-at-Risk (VaR) 

and Conditional Value-at-Risk (CVaR). 

4.1 Simulation Setup 

We simulate two datasets representing different risk modeling scenarios: 

  Dataset A (Discrete Events): Represents the number of operational failures in a production facility 

over 100 time periods, modeled using a Poisson distribution with λ = 3. 

  Dataset B (Continuous Losses): Represents financial losses over 100 days, simulated from both 

Normal (µ = 0, σ = 1) and Lognormal (µ = 0, σ = 0.25) distributions. 

For each dataset, we estimate VaR and CVaR at the 95% confidence level using empirical quantiles and 

analytical formulas where applicable. 

4.2 Results for Discrete Distribution (Poisson) 

Table 1 shows risk estimates for Dataset A based on the Poisson distribution. 
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Table 1: Risk Metrics from Poisson-Distributed Event Counts 

Confidence Level VaR CVaR 

95% 6 6.72 

 

The stepwise nature of the Poisson PMF results in discrete jumps in VaR. CVaR, being an average of tail 

values, smooths this effect but is still limited by the resolution of discrete outcomes. 

4.3 Results for Continuous Distributions 

Table 2 summarizes the risk metrics computed from continuous loss models. 

Table 2: Risk Metrics from Continuous Distributions (Normal vs. Lognormal) 

Distribution Confidence Level VaR CVaR 

Normal 95% 1.64 2.06 

Lognormal 95% 1.84 2.65 

 

As expected, the Lognormal distribution—with its positive skew and heavy tail—yields higher estimates of 

both VaR and CVaR. This illustrates the importance of accounting for tail behavior in financial risk 

modeling [18, 19]. 

4.4 Real-World Case Study: Daily Stock Returns 

We analyze daily returns of a publicly traded stock over a six-month period. The returns are first tested for 

normality using the Shapiro-Wilk test and then fitted to both Normal and Lognormal distributions. Table 3 

displays the resulting VaR and CVaR estimates. 

Table 3: Risk Metrics from Real Stock Return Data 

Distribution Fit VaR (95%) CVaR 

(95%) 

Normal -2.1% -2.7% 

Lognormal -2.4% -3.4% 

 

The Lognormal model captures the asymmetric risk profile better than the Normal, reflecting the heavier 

downside risk that is typical in financial returns [4]. 

4.5 Results and Discussion 

Figure 1 shows a histogram of event counts simulated from a Poisson distribution with rate parameter λ = 3. 

The discrete nature of the data is evident in the integer-valued support. This type of distribution is suitable for 

modeling operational risks and rare event counts in risk assessment frameworks. 

Figure 2 illustrates a symmetrical bell-shaped curve typical of the Normal distribution. It is widely used in 

financial modeling and is often assumed in standard VaR and CVaR computations. However, its light-tailed 

nature may underestimate risk in volatile markets. 
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Figure 1: Histogram of simulated Poisson-distributed event counts (λ = 3). 

 

Figure 2: Histogram of simulated losses from a Normal distribution (µ = 0, σ = 1). 

 

Figure 3 shows a positively skewed distribution generated from a Lognormal model. It captures the heavy tails 

and asymmetric risk profiles often encountered in real-world financial or environmental data. Lognormal 

distributions are preferable when the loss data exhibit large positive outliers. 

Figure 4 shows the estimated VaR and CVaR for the Normal distribution. While this distribution allows 

for closed-form estimation of both metrics, it tends to underrepresent tail risk due to its thin tails, making it 

less suitable in extreme loss scenarios. 
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Figure 3: Histogram of simulated losses from a Lognormal distribution (µ = 0, σ = 0.25). 

 

 

Figure 4: VaR and CVaR at 95% level for losses modeled by a Normal distribution. 

 

Figure 5 demonstrates higher VaR and CVaR estimates when using a Lognormal distribution, which 

better reflects the possibility of extreme losses. This reinforces the argument for using heavy-tailed models 

in financial risk estimation. 

The simulation and case study results affirm that the choice of distribution has a significant impact on the 

estimation of risk metrics. Discrete models are appropriate for count data but offer lower granularity in risk 

measures. Continuous models provide smoother and often more realistic estimates, particularly when 
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Figure 5: VaR and CVaR at 95% level for losses modeled by a Lognormal distribution. 

 

heavy-tailed phenomena are involved. 

Incorrect distributional assumptions may lead to a dangerous underestimation of risk, especially in systems 

sensitive to rare but impactful events [6, 9]. Hence, careful distribution selection, supported by statistical 

testing and validation, should be an integral part of any robust risk assessment framework. 

5 Conclusion and Recommendations 

This study explored the comparative role of discrete and continuous probability distributions in risk assessment 

models, emphasizing their impact on widely used risk metrics such as Value-at-Risk (VaR) and Conditional 

Value-at-Risk (CVaR). Through theoretical analysis, simulation studies, and a real-world case application, we 

demonstrated that the choice of distribution significantly influences the accuracy and reliability of risk 

estimation. 

Discrete distributions like Poisson and Binomial are well-suited for event-count modeling, particularly in 

operational risk and reliability studies. However, their discrete nature can limit resolution in risk metrics 

and complicate tail analysis. On the other hand, continuous distributions such as the Normal, Lognormal, 

and Gamma provide greater flexibility in modeling skewness, heavy tails, and continuous phenomena like 

financial losses and time-to-failure data. 

Simulation results highlighted that misspecifying the distribution—especially by assuming normality in 

heavy-tailed contexts—can lead to severe underestimation of tail risk. This underlines the importance of 

validating distributional assumptions using statistical tests, exploratory data analysis, and domain knowledge. 

Based on the findings of this study, we offer the following recommendations for practitioners and 

researchers in risk assessment: 

1. Use data characteristics to guide distribution selection. For count-based or event-driven data, 

consider discrete models. For continuous metrics such as monetary losses or durations, continuous 

models are more appropriate. 

2. Always test for distributional fit. Employ statistical tools like Q-Q plots, goodness-of-fit 

tests (e.g., Shapiro-Wilk, Kolmogorov–Smirnov), and information criteria (e.g., AIC, BIC) to validate the 
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assumed distribution. 

3. Prefer heavy-tailed distributions in risk-sensitive applications.  When modeling extreme 

events or tail risks (e.g., in finance, disaster management), distributions like Lognormal, Pareto, or t-

distributions should be prioritized over light-tailed ones. 

4. Account for distributional impact when reporting risk metrics. Clearly communicate the 

underlying distribution used when presenting metrics like VaR or CVaR, and where possible, conduct 

sensitivity analysis using alternative models. 

5. Incorporate distribution selection into model governance frameworks. In high-stakes 

environments such as banking or infrastructure risk management, ensure distribution assumptions are reviewed, 

documented, and regularly re-evaluated. 

Future research may explore hybrid models that blend discrete and continuous elements (e.g., compound 

distributions), or apply machine learning-based approaches for distribution selection and density estimation. 

Additionally, domain-specific case studies in healthcare, climate science, or cybersecurity could reveal further 

nuances in distributional impacts. 

This paper reinforces the critical importance of informed and context-sensitive distribution selection in 

building robust and interpretable risk assessment models. 
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