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Abstract:- With the advent of 5G networks and advancements in wireless communication, the need for adaptive 

and robust path loss prediction models has become increasingly critical. Although traditional empirical and 

deterministic models have served as foundational tools, they often fail to effectively capture the intricacies of 

modern wireless propagation environments. This shortfall has spurred a transition toward machine learning (ML) 

and deep learning (DL) techniques, which demonstrate greater adaptability across varying scenarios and frequency 

ranges. 

This paper provides a comprehensive review of existing path loss prediction methods, focusing on the potential 

of ML and DL approaches as viable alternatives to conventional models. It explores a range of methodologies, 

from shallow algorithms such as Random Forest, Gradient Boosting, Support Vector Regression, and Artificial 

Neural Networks to advanced approaches like Convolutional Neural Networks, hybrid deep learning frameworks, 

and Adaptive Neuro-Fuzzy Inference Systems. By analyzing their performance, advantages, and limitations, the 

study identifies key trends and uncovers research gaps in this evolving field. 

The findings aim to inform future research efforts aimed at designing path loss prediction models that are more 

accurate, efficient, and capable of adapting to the demands of next-generation wireless communication systems. 

Keywords: 5G wireless communication systems, Artificial neural network, Deep learning, Feature engineering, 

Machine learning Algorithms, Pathloss prediction. 

 

1. Introduction 

To effectively build and optimize wireless communication networks to satisfy user expectations, particularly for 

5G networks, it is imperative to understand the propagation of radio waves. A crucial metric that characterizes the 

decrease in signal strength when a signal moves over a medium is path loss (PL) modeling [1]. Throughout the 

years, diverse path loss models have been formulated to cater to different scenarios, falling into categories such 

as theoretical or physical, deterministic, and empirical. However, their foundation was established using 

traditional statistical techniques, which have been shown to be unstable with a variety of wireless channels and 

prone to high prediction errors, particularly when tested outside the model's original environment [2]. For 

determining radio coverage and optimizing overall network efficiency, it is essential to employ models that can 

precisely and effectively estimate path loss (PL). Machine-learning-based PL models have emerged as efficient 

techniques addressing the limitations of traditional models used for evaluating radio-wave propagation and 

constructing channel models based on measurement data. To automatically approximate nonlinear systems, they 

can comprehend the structural relationships between data in complex settings [3]. 
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This survey aims to comprehensively review and categorize the existing literature on machine learning-based path 

loss models. The survey covers a wide range of ML approaches, including supervised and unsupervised learning, 

deep learning, and ensemble methods, among others. We delve into each category, considering its relevance, 

advantages, and possible obstacles within the framework of path loss modeling for wireless communication 

systems.  

The structure of this survey is outlined as follows: Section II offers an overview of radio propagation and path 

loss, emphasizing their limitations and advocating for the integration of machine learning. Section III introduces 

the fundamental principles of machine learning and its pertinence to wireless communication. Subsequent sections 

explore specific types of machine learning-based path loss models, delving into their methodologies, applications, 

and significant contributions. Finally, Section VI wraps up the survey by summarizing key insights and suggesting 

potential directions for future research. 

As we progress through this survey, it becomes clear that the fusion of machine learning and path loss modeling 

holds significant potential for enhancing the capabilities of wireless systems, ultimately contributing to the 

establishment of more efficient, dependable, and future-proof networks. 

2. Radio Signal Propagation: Journey From Transmitter to Receiver 

A. Radio Propagation 

In essence, radio-wave propagation involves the interaction between a transmitter and a receiver. Each endpoint 

comprises a receiver linked to an antenna characterized by specific geometry. Signals generated by the receiver 

undergo modulation through a carrier signal, and as the modulated signal traverses toward the receiver, it is 

demodulated at a speed primarily determined by the speed of light. The transmitted signal may experience 

attenuation and/or distortion due to environmental factors such as absorption, reflection, refraction, diffraction, or 

a combination of these processes. Proximity of obstacles to the line of sight (LOS) path can obstruct the Fresnel 

zone, leading to fading in received signal strength, presenting potential challenges. Furthermore, when multiple 

antennas release signals simultaneously at the same frequency and time but in different directions, complications 

arise. These signals may choose several routes to the recipient, resulting in various ways for each path to interact 

with its environment. Such signals are delayed by a certain amount when they reach the receiver. Constructive 

interference occurs when delays lead to signals that are in phase with each other. However, if the signals are out 

of phase, they will generate destructive interference. Multipath fading is the name given to the effects of this 

interference. We refer to the attenuation brought on by huge static impediments, such as buildings and mountains, 

as large-scale fading, shadowing, or slow fading. If the diminution results from small, temporary objects that 

evolve over time, it is referred to as small-scale fading. Doppler spreading can cause a frequency shift for mobile 

receivers. Frequency shifts and delays lead to small-scale fading [4]. 

B. Pathloss 

The design and enhancement of wireless communication networks necessitate the inclusion of path loss prediction 

in the planning and optimization process. By considering variables including distance, frequency, topography, 

antenna height, and environmental characteristics, it includes predicting the attenuation of signal power as it 

propagates via the wireless medium. A straightforward, all-encompassing model for trail loss is needed for link 

budgeting, system performance optimization, coverage forecast, and an associate degree of accuracy. 

Consequently, researchers and engineers have been diligently working on designing efficient and cost-effective 

algorithms for predicting path loss across different scenarios and frequency ranges [5]. In their research paper, [6] 

described their findings regarding path loss and how to predict it using machine learning. They stated that path 

loss is a change in a radio wave's power as it passes through a building between the transmitter and receiver. In 

wireless communication network design and development, path loss prediction holds significance, particularly as 

receivers require a minimum power level for accurate data reception. This is crucial for tasks such as link budget 

determination, coverage analysis, and base station placement. Several existing route loss models adopt a linear 

relationship between distance and path loss. By comparing graphical representations of the data, this approach has 

effectively addressed the issue [7]. 
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In the study conducted by [8], an elucidation of path loss was provided by highlighting the fact that propagation 

models incorporate signal attenuation or path loss as a quantification of the electromagnetic wave's power density 

while traversing space from a transmitter. Path loss can be used to monitor network planning, coverage, and 

system performance to provide the best possible reception. Numerous factors, like as geography, frequency, and 

the elevations of both the transmitting and receiving antennas, can affect how far a signal can travel [9]. 

With a transmission power of 𝑃𝑡𝑥   Watts (W) and an antenna gain of 𝐺𝑡 dBi, the overall Effective Isotropic 

Radiated Power (EIRP) from the transmitter’s radio can be calculated as 𝑃𝑡𝑥 ∗ 𝐺𝑡𝑥. In logarithmic terms, 𝑃𝑡𝑥 is 

expressed in dBm, denoting decibels relative to a milliwatt, and the EIRP simplifies to the sum of 𝑃𝑡𝑥 and 𝐺𝑡𝑥. 

Employing the standard log-domain link budget equation, the entire radio link can be succinctly summarized. 

𝑃𝑟𝑥 =  𝑃𝑡𝑥  +  𝐺𝑡𝑥  +  𝐺𝑟𝑥 −  𝑃𝐿 (1) 

using 𝑃𝑟𝑥 and 𝐺𝑟𝑥 to denote the power received by the receiver and the antenna gain of the receiver facing the 

transmitter, respectively. In this context, all attenuation due to path loss is encompassed within the PL term. This 

formula accounts for the combined gain and attenuation associated with multiple competing signals. Additionally, 

it assumes that there are no outside noise sources in the vicinity, such as thermal noise or transmitter interference. 

The ratio of signal to noise, expressed in the log domain as SNR =  𝑃𝑟𝑥 −  N , frequently employed to depict 

signal quality at a specific location. The Signal to Interference and Noise Ratio (SINR) is alternatively defined 

considering interference arising from a recognized group of interfering sources: 

SINR =  𝑃𝑟𝑥 − ( N + ∑ 𝐼𝑗
𝑁
𝑗 )  (2) 

In the context of a specific receiver design and modulation system, there exists a known relationship between 

Signal-to-Noise Ratio (SNR) and bit error rate. This relationship, denoted as MDS (𝑃𝑒) where 𝑃𝑒 represents the 

probability of bit error, enables the determination of the minimum detectable signal for a given radio based on the 

acceptable error rate. Identifying the covered points becomes a straightforward process by considering the set of 

receiver locations that satisfy this inequality: 

𝑃𝑡𝑥  +  𝐺𝑡𝑥  +  𝐺𝑟𝑥  −  𝑃𝐿 ≥  𝑀𝐷𝑆(𝑃𝑒) (3) 

Forecasting the PL value becomes intricate when considering the environment and the radio link, as the specific 

values of P and G are known for a given link. Conversely, in measurement-based approaches, the challenge lies 

in estimating the PL value for unmeasured locations through interpolation. In the context defined here, the model's 

objective is to predict the value of 𝐿𝑡  +  𝐿𝑠  in this logarithmic domain equation: 

𝑃𝐿 =  𝐿𝑡  +  𝐿𝑠  +  𝐿𝑓(𝑡) (4) 

𝐿𝑠 denotes the attenuation due to shadowing, arising from large stationary structures like buildings and mountains. 

𝐿𝑡 represents the fundamental free-space path loss, and 𝐿𝑓t signifies the short-term fast fading attributed to 

destructive interference from small scatterers and the impact of multipath effects, which exhibit variations over 

time (t). Time and frequency selectivity characterise small-scale fading, which means that it changes with time 

and frequency. It is not possible to expect models to anticipate the number 𝐿𝑓 (t) without comprehensive 

knowledge of the environment. This additional error is commonly determined through a stochastic calculation 

involving a probability distribution, typically employing the Raleigh distribution, although the Ricean and m-

Nakagami distributions are also frequently used. Thus, making it possible to model, if not precisely anticipate, 

frequency and time selective fades, which in turn enables the examination of their impact on modulation schemes 

[10][11]  

The many approaches put out to forecast the distribution of 𝐿𝑓(𝑡) and the value of 𝐿𝑡  +  𝐿𝑠  will be covered in 

the sections that follow. 

3. Machine Learning Algorithms 

This section exclusively addresses the commonly employed methods for predicting path loss in communication 

systems. Random Forest, ANN, and SVM are examples of shallow algorithms, whereas CNN is covered from a 
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deep learning perspective. To the extent that the survey is self-contained, it provides readers with an understanding 

of the fundamental ideas behind these algorithms. 

A. Random Forest Regressor (RFR) 

The ensemble learning technique known as the Random forest (RF) consists of several regression trees[12]. A 

voting mechanism is used to improve each tree's prediction performance, helping to compensate for its weak 

robustness. Breiman and Cutler [13] proposed the unique non-parametric supervised machine learning technique 

known as Random Forest. 

The bagging method called RF has its roots in "bootstrap aggregation". The main idea behind bagging is to take 

a dataset, bag a decision tree or other weak learner on it, and then make many bootstrap replicas of the dataset and 

use those to build decision trees. Each tree is given a different set of training data using Bootstrap aggregating. 

The ultimate outcome is ascertained by averaging the performance of every single tree, following the training 

process utilising these samples.  

For reducing dataset redundancy or dimensionality, the RF is still a helpful technique. High dimensional input 

characteristic datasets provide more information, but the prediction accuracy may be lowered by superfluous and 

redundant components. In this study, the RF technique was used to process the observed signal dataset in order to 

extract the most relevant features and eliminate the superfluous and unimportant ones. Before applying the RF 

algorithms for regression analysis or data training, two or more of their primary hyperparameters must be provided 

[14]. One such hyperparameter is the quantity of trees. The subsequent section furnishes a mathematical 

elucidation of the RF input-output function model. 

𝑅𝐹(𝑥𝑛 , 𝑦𝑛)  =  { 𝑓(𝑥𝑛 , 𝜃𝑚, 𝑦𝑛)} (5) 

Here,  𝜃𝑚 represents the count of trees, and 𝑥𝑛 , 𝑦𝑛 denote the input and target output data, respectively. In this 

case, the endeavour to select the most valuable and informative subset of features was completed by employing a 

set of trees (200) on the targeted measured signal datasets. 

B. Support Vector Regression (SVR) 

The support vector machine (SVM) is a machine learning approach rooted in statistical learning theory. It operates 

by transforming a dataset nonlinearly from a fixed-dimensional space to a sophisticated-dimensional one, allowing 

for linear separation into distinct segments. SVR, a flexibility of SVM tailored for regression challenges, enables 

path loss prediction [15]. The primary goal of SVR is to identify a hyperplane within the high-dimensional feature 

space and align the sample points onto it. This hyperplane in the feature space can be defined by the linear function 

as follows. 

𝑓(𝒙)  =  𝑤𝑇𝜑 (𝒙)  +  𝑏 (6) 

where x is an input feature vector, w is the normal vector that controls the orientation of the hyperplane, φ (·) is 

the nonlinear mapping function, and b is the displacement item. 

The ideal hyperplane is a constrained optimization problem of the form  [16] 

𝑚𝑖𝑛
𝒘, 𝑏, 𝜉, 𝜉∗   

1

2
𝒘𝑇𝒘 +  𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗ )𝑁
𝑖=1   (7) 

𝑠. 𝑡. 𝑓(𝑥𝑖) −  𝑦𝑖  ≤  𝜀 +  𝜉𝑖   (8) 

𝑦𝑖  −  𝑓(𝑥𝑖) ≤  𝜀 +  𝜉𝑖
∗  (9) 

𝜉𝑖  , 𝜉𝑖
∗  ≥  0, 𝑖 =  1, … , 𝑁  (10) 

where C denotes the regularization coefficient, ε represents the insensitive loss, signifying that the predicted value 

is considered accurate when the deviation between the predicted value and the actual value is less than ε, 𝜉𝑖  , 𝜉𝑖
∗
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are slack variables that enable a slight variation in the insensitivity range on both sides of the hyperplane. 

Subsequently, by introducing Lagrange multipliers and solving the dual problem, the approximate function can 

be formulated as.  

𝑓 (𝑥)  =  ∑ (−𝛼𝑖  +  𝛼𝑖
∗)𝐾(𝑥𝑖  , 𝑥)  +  𝑏 𝑁

𝑖=1  (11) 

represent Lagrange multipliers, and K (·, ·) denotes a kernel function utilized for nonlinear mapping from a low-

dimensional space to a high-dimensional space.  

The performance of the SVR-based predictor is influenced by the selected kernel function. Currently prevalent 

kernel functions include the sigmoid, linear, polynomial, Gaussian radial basis function, and various combinations 

of these. In this study, a Gaussian kernel with adjustable parameters is employed as the kernel function, and it is 

defined as: 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−γ ||𝑥𝑖 − 𝑥𝑗||
2

) , γ > 0 (12) 

The Gaussian kernel is a widely used kernel function that performs effectively in tasks requiring no previous 

information and limited feature dimensions [17]. The same method employed in [20] was utilized to look up the 

parameters used in this investigation, including the regularization coefficient, insensitive loss, and kernel function 

parameter. 

C. Artificial Neural Network 

Artificial Neural Network (ANN) emerges as a favoured method for path loss prediction due to its capability to 

address nonlinear regression challenges and exhibit low prediction errors, particularly with large sample sizes [18] 

. ANNs are constructed by connecting neurons to form networks. The multi-layer perceptron structure of a feed-

forward ANN, based on the neuron model, typically includes an input layer, one or more hidden layers, and an 

output layer. It is noteworthy that neurons within the same layer lack connections, and there are no cross-layer 

connections; however, neurons in the subsequent layer are fully interconnected with those in the current layer 

through different weights. 

The precision and intricacy of the model are significantly influenced by the network scale, determined by the 

number of neurons and hidden layers. However, identifying the optimal ANN structure for path loss prediction 

remains a challenge. In a typical rural macrocell radio network planning scenario, research in [19] indicates that 

a less intricate ANN, such as a single-hidden-layer feed-forward ANN with a limited number of neurons, is likely 

to yield satisfactory accuracy in path loss prediction. In comparison, ANNs featuring multiple neurons and hidden 

layers may exhibit inferior generalization properties. The potential source of this problem is likely overtraining, 

where a model excels on data similar to the training dataset but lacks adaptability to handle variations. 

ANNs are typically trained using the low-complexity back propagation approach. A common name for this kind 

of network is BPNN. With a collection of training samples represented as {(x1, y1), (x2, y2), . . . , (x𝑁 , y𝑁)},where 

𝑥𝑖  = {x1
𝑖  , x2

𝑖  , . . . , x𝐿
𝑖} ∈  𝑹𝐿 is a feature vector and yᵢ ∈ ℝ¹ is the target result of path loss, the forward 

propagation stage computes the predicted path loss value, denoted as: 

y𝑖
′  =  f𝑜  (ω𝑜𝑚  (f𝑚 (ω𝑚𝑙x𝑖)  +  θ𝑚))  + θ𝑜 (13) 

ω𝑚𝑙  denotes the connection weights linking the hidden layer neurons to inputs, ω𝑜𝑚 signifies the connection 

weights between the output layer neurons and the hidden layer, while θ𝑚 and θ𝑜 serve as the thresholds for the 

hidden layer neurons and the output layer neuron, respectively. Additionally, f𝑚(·) and f𝑜(·) represent the transfer 

functions corresponding to the hidden layer neurons and the output layer neuron, respectively. 
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Fig. 1. A typical ANN architecture. 

Assessing the generality capability of these Path Loss models based on Machine Learning, which involves gauging 

the prediction accuracy concerning the target values in both training and validation datasets, can be proficiently 

achieved using mathematical expressions. Metrics such as the mean absolute percentage error (MAPE), error 

standard deviation (ESD), mean absolute error (MAE), and root mean square error (RMSE), as depicted in the 

equations below, serve as effective tools for this evaluation. 

𝑀𝐴𝐸 =
1

𝑄
 ∑ |𝑃𝐿𝑞 − 𝑃𝐿′

𝑞|𝑄
𝑞=1   (14) 

𝑀𝐴𝑃𝐸 =
100

𝑄
 ∑ |

𝑃𝐿𝑞−𝑃𝐿′
𝑞

𝑃𝐿𝑞
|𝑄

𝑞=1   (15) 

𝑅𝑀𝑆𝐸 = √
1

𝑄
 ∑ (𝑃𝐿𝑞 − 𝑃𝐿′

𝑞)
2𝑄

𝑞=1   (16) 

𝐸𝑆𝐷 = √
1

𝑄−1
 ∑ (𝑃𝐿𝑞 − 𝑃𝐿′

𝑞)
2𝑄

𝑞=1   (17) 

𝑀𝑎𝑥𝑃𝐸 = max(𝑃𝐿𝑞 − 𝑃𝐿′
𝑞) (18) 

Here, for the test sample index represented by 𝑞 = 1, …, 𝑄, where 𝑄 is the total number of test samples, 

𝑃𝐿𝑞  and 𝑃𝐿′
𝑞 denote the samples from measurement and path loss, respectively.  

D. Convolutional Neural Networks (CNN) 

Within the domain of deep learning, Convolutional Neural Networks (CNNs) constitute a specific category of 

Artificial Neural Networks (ANNs), specifically tailored for tasks related to visual imagery. These networks 

emerged due to the limitations of traditional ANNs in handling complex computations related to image data. The 

origins of CNNs draw inspiration from the visual system of animals, notably the pioneering work of Hubel and 

Wiesel in 1959. They observed that cells in the animal visual cortex can discern light within small receptive fields. 

This discovery influenced the creation of CNN models and architectures [20]. 

Building on these discoveries, LeCun et al. introduced the modern CNN framework, exemplified by LeNet-5, 

renowned for recognizing handwritten digits using a backpropagation algorithm for training [21]. Despite the 

advancements, the need for more robust and innovative approaches persisted. The breakthrough came with the 
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introduction of AlexNet by Krizhevsky et al. in 2012. This model not only garnered attention but also paved the 

way for modern CNN architectures, applicable in both computer vision and natural language processing [22]. 

Typically, a CNN comprises one or more blocks of convolutional and pooling layers, followed by fully connected 

(FC) layers and an output layer. The convolutional layer, a fundamental building block, learns feature 

representations from inputs through the use of learnable convolutional kernels or filters, generating various feature 

maps [23]. CNNs distinguish themselves from other pattern recognition algorithms by seamlessly integrating both 

feature extraction and classification [24]. Fig. 3 illustrates a basic CNN through a simplified schematic 

representation. This uncomplicated network comprises five distinct layers: an input layer, a convolution layer, a 

pooling layer, a fully-connected layer, and an output layer. These layers are bifurcated into two segments: feature 

extraction and classification. Feature extraction entails an input layer, a convolution layer, and a pooling layer, 

while classification involves a fully-connected layer and an output layer. 

The input layer establishes a fixed size for input images, which may be resized as necessary. Subsequently, the 

image undergoes convolution with multiple learned kernels utilizing shared weights in the convolution layer. 

Following this, the pooling layer reduces the image size while endeavoring to retain pertinent information. The 

outcomes of the feature extraction process are termed feature maps. The classification phase amalgamates the 

extracted features within the fully-connected layers. Lastly, each object category in the output layer is represented 

by a dedicated output neuron. The result of the classification phase culminates in the classification outcome. 

 

Fig. 2. Fundamental architecture of a convolutional neural network (CNN) [25]. 

4. Machine Learning Modeling of Pathloss 

To obtain approximated functions for path loss, one might apply the machine learning idea. A supervised learning 

approach is usually used for path loss prediction. In order to forecast path loss, modelling requires input features 

as well as output. The machine learning algorithm computes a function that corresponds to the output. The initial 

stage involves collecting data, where measurement samples are acquired, encompassing both the path loss value 

and its associated attributes. These attributes are classified into two classes: system parameters and environmental 

parameters. System-dependent parameters include antenna separation distance, height, transmitter and receiver 

positions, angle between line of sight and the horizontal plane, carrier frequency, and other relevant factors. The 

propagation of the environment has no bearing on these factors. Terrain, vegetation, and building conditions are 

examples of environment-dependent parameters that are influenced by local weather and environmental factors 

[26]. Temperature, precipitation rate, humidity, and other variables are derived from the weather. The path loss 

prediction model's performance is strongly correlated with the sample data size. Practically speaking, the data 

gathered from the measurement include hundreds of features, including parameters that are undesired and 

unnecessary. The algorithm's ability to model the path loss for prediction is often negatively impacted by the 

irrelevant parameters. In order to decrease the quantity of features without sacrificing their quality, feature 

selection is used. The most pertinent subset features with the data needed to forecast the path loss are chosen 

through feature selection. There are several feature selection techniques, including wrapper, filter, and embedding. 
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Following feature selection, an apt procedure for modelling the PL for prediction is selected or adjusted. The 

algorithm's accuracy and complexity are among the elements considered when choosing the right one. The 

algorithms' hyperparameter values are established prior to the start of the learning process. There are several 

methods for choosing the ideal set of parameters, including grid search, random search, and Bayesian 

optimisation. The effectiveness of hyperparameters significantly impacts the competence of algorithms in 

predicting path loss. The algorithm's efficacy and efficiency are determined by measuring the performance. 

Evaluation metrics encompass mean absolute error, mean absolute percentage error, maximum prediction error, 

correlation factor, root mean square error, and error standard deviation [27]. But since there aren't any performance 

measurements that are accepted by all research groups, different studies employ various performance metrics. 

 

Fig. 3. The process of conducting path loss analysis using machine learning techniques 

A. Comparison of traditional and machine learning methods 

It is possible to summarise the contrast between these two methods for forecasting path loss in wireless signal 

broadcast by pointing out that they are all concerned with doing so, but in slightly different ways. For example, 

conventional methods are often considered a priori, meaning that they rely on past environmental knowledge to 

forecast future transmission events by employing precise measurements. In contrast, machine-learning techniques 

use data inputs and outputs to create or develop models. Path loss data features are picked or retrieved from input 

data using models that are designed to take transmission data inputs [28]. To arrive at an informed decision 

regarding propagation path loss, machine learning models utilize their predictive capabilities by analyzing the 

attributes extracted or selected from input data. When facing challenges or impossibilities in undertaking such 

tasks, machine learning methods are specifically suited to handle these situations [29]. The key advantage of the 

machine learning technique lies in its ability to create a model, train it based on desired outputs, and validate it 

against real-world scenarios. This fundamental feature distinguishes machine learning from traditional models, 

enhancing its predictive accuracy. Additionally, in scenarios where prior knowledge of the environment is lacking, 

machine learning can still offer predictions based on environmental variables, yielding results more accurate than 

those obtained through conventional methods [30]. 
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Given the constant variations in the propagation environment, it becomes imperative to equip generated models 

with the accurate parameter set for evaluating the efficacy of machine learning in path loss prediction. Hence, 

ensuring appropriate feature selection and extraction is crucial to yield significant results in effective path loss 

prediction, validated through performance testing. This underscores a key advantage of the machine learning 

technique over the traditional approach [31]. In contrast to the conventional propagation path loss method, which 

relies on predicting for a single path or a set of comparable paths, machine learning algorithms can anticipate 

propagation path loss across diverse locations. Furthermore, the machine learning approach not only establishes 

a connection between input and output data but also has the capability to make predictions based on both labelled 

and unlabelled data[32]. 

The classical approach holds a significant advantage in predicting propagation path loss in scenarios where 

conducting measurements is either practically infeasible or presents challenges, distinguishing it from the machine 

learning approach [33]. Even if the traditional model approach's correctness is sometimes disputed or called into 

doubt, it is nevertheless relatively straightforward to comprehend and apply, which facilitates its incorporation 

into a number of network simulators. Yet, an additional limitation of traditional techniques lies in their capability 

to predict propagation path loss solely along a single trajectory, adjusting solely based on the data at their disposal 

from one or more specific environments. These classical models rely on inputs such as distance, carrier frequency, 

and the heights of both the transmitter and receiver. The conventional approach allows for supplementary models 

that, while potentially unable to operate independently, have the potential to enhance existing, less effective 

models, rendering them more attractive.  

B. Predictive Model for Path Loss Using Deep Learning 

Deep learning architectures extensively utilized for path-loss prediction encompass CNNs and hybrid models. 

These hybrid models amalgamate two or more diverse deep learning algorithms, such as combining shallow 

algorithms with deep learning or integrating traditional techniques with deep learning. The incorporation of these 

approaches enhances the accuracy of path-loss predictions. 

C. Pathloss prediction on convolutional neural network 

In wireless communication networks, the CNN and its variations are used to anticipate route loss. CNN 

architectures are utilized by[34]. Research in [35] predicts outdoor path loss from 2D satellite pictures using a 

transfer learning VGG-16 model, while [36] predict interior 5G communication path loss using a CNN equipped 

with meta-learning. While the latter emphasizes how the meta-learning technique outperforms traditional CNN 

and empirical models in indoor situations, the former underlines the advantage of VGG-16 over ray tracing. 

Although [37] emphasis on meta-learning for 5G scenarios and [38] focus on outdoor surroundings both improve 

accuracy in their respective contexts, these are the main differences between the two research. 

For different contexts, Cheng et al.[39], Levie et al.[40], and Nobuaki et al.[41] offer different CNN-based path 

loss prediction models. In suburban regions, Cheng's model handles 28 GHz mmWave route loss, outperforming 

deterministic and empirical models in terms of complexity and accuracy. In contrast to models employing radial 

basis functional interpolation and tensor completion techniques, Levie's RadioUNet model for cellular 

optimization makes use of numerous input channels to build desirable radio maps. However, in contrast to ray 

tracing, Nobuaki's AlexNet model improves estimation accuracy by taking reflection and diffraction into account 

in open situations. Although Levie's contribution is in the area of cellular optimization, Cheng and Nobuaki 

concentrate on particular outside circumstances, demonstrating the variety of applications. 

In a variety of communication systems, Ma et al.[42], Kuno et al. [43], and Qiu et al. [44] use CNNs to anticipate 

path loss. Ma's CNN-based model outperforms 3D ray tracing methods in indoor Wi-Fi path loss prediction. CNNs 

are used in Kuno's model for prediction, with a focus on the significance of creating top and side view images for 

route loss modelling. Modern 3D ray tracing simulators can attain similar accuracy levels as Qiu's PP-Net, but 

with far more processing efficiency. Although Qiu's work stands out for its efficiency advantages, Ma and Kuno 

concentrate on specific communication scenarios (general communication and indoor Wi-Fi, respectively), while 

Qiu offers a trade-off between computing complexity and accuracy. 
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While Sotiroudis et al. [45] and Bal et al. [46] both use CNNs for path loss prediction, their methods are different. 

Bal shows that path loss may be predicted in certain areas by using VGG-16 to extract image features from height 

maps and satellite images that are peculiar to a given region. As opposed to tabular data, Sotiroudis use CNNs for 

path loss prediction in urban settings, associating a picture with each measurement and demonstrating flexibility 

to novel surroundings with reduced computing complexity. Bal's research focuses more on region-specific 

forecasts, but Sotiroudis shows how flexible and effective CNNs can be in city environments. 

Table I. Overview of CNN-Based Path Loss Prediction 

Ref 
Deep Learning 

Architecture 

Baseline 

Algorithms 

Indoor / 

Outdoor 
Generation Results 

[3] Transfer learning 

VGG-16 

Ray Tracing Outdoor Not specified Improved accuracy of path-

loss prediction using VGG-

16 

[47] Meta-learning-

configured CNN 

Conventional 

CNN, Empirical 

models 

Indoor 5G Outperforms conventional 

CNN and empirical models 

in path loss prediction 

through meta-learning 

configuration. 

[48] RadioUNet Radial basis 

functional 

interpolation, 

Tensor 

completion 

Not 

specified 

Not stated Outperforms models based 

on radial basis functional 

interpolation and tensor 

completion in cellular 

optimization and device-to-

device link scheduling. 

[49] CNN Empirical, 

Deterministic 

models 

Outdoor 

(suburban) 

5G Proposed model excels in 

accuracy and complexity 

compared to empirical and 

deterministic models in 28 

GHz mmWave path loss 

prediction. 

[50] AlexNet Ray tracing Outdoor 

(open) 

Not stated Enhanced path loss 

estimation accuracy 

compared to ray tracing in 

open environments. 

[51] CNN Conventional 

model and CNN 

model 

Not 

specified 

Not 

Available 

CNN outperforms 

conventional models in 

predicting path loss using 

building side view and top 

view images. 

[52] CNN 3D ray tracing 

methods 

Indoor Not specified CNN performs better than 

3D ray tracing methods in 

indoor Wi-Fi path loss 

prediction. 

[47] Path loss 

prediction 

network (PP-Net) 

State-of-the-art 

3D ray tracing 

simulator 

Outdoor 5G PP-Net's accuracy is 

comparable to 3D ray tracing 

simulator but is 30 times 

faster. 
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Ref 
Deep Learning 

Architecture 

Baseline 

Algorithms 

Indoor / 

Outdoor 
Generation Results 

[53] VGG-16 None mentioned Not 

specified 

Not 

Available 

Region’s satellite image or 

height map can be used to 

predict path loss. 

[54] CNN Tabular data Outdoor 

(urban) 

Not 

Available 

CNN produces similar 

results with tabular data and 

adapts swiftly to new 

environments with less 

computational complexity. 

1) Pathloss Prediction with Hybrid Deep Learning 

This section delves into the utilization of hybridized deep learning techniques for predicting path loss in wireless 

communication systems. Thrane et al. [55] and Sotiroudis et al. [56]use a hybrid deep learning strategy that 

combines CNN with additional algorithms (ANN and XGBoost, respectively). While Sotiroudis' CNN-XGBoost 

surpasses other hybrid algorithms in 5G and IoT situations by merging tabular data and images, Thrane's ANN-

CNN hybrid improves accuracy in mobile communication systems using satellite photos. In addition, Lee et al 

[57] demonstrates enhanced performance over deterministic models and probabilistic predictions when using 

CNN hybrids (3D ray tracing-CNN and CNN-NGBoost, respectively) for outdoor millimetre wave channels and 

urban environments. 

Ates et al. [44] and Juang [45] investigate various hybrid models. Juang's AE-GAN outperforms traditional models 

at 3.5 GHz in translating street map imagery for PL prediction.  

In contrast to ray tracing, Ates et al.'s VGG-16-ResNet-50 exhibits proficient accuracy in predicting path loss 

exponent and shadowing factor using 2D satellite imagery. Sani et al.[46] introduce a ResNet50V2-regression 

hybrid capable of accommodating multiple factors and configurations, leading to highly accurate path loss 

predictions. Cheng et al.[47] propose an attention-enhanced CNN (AE-CNN) hybrid for millimeter-wave path 

loss in 5G. This model showcases its efficacy in 5G communication networks by surpassing deterministic and 

empirical methods through distance entrenched local range multi-scanning. 

D. Shallow Algorithms for pathloss prediction 

1) Forecasting Path Loss Using Adaptive Neuro-Fuzzy Inference System (ANFIS) 

The table exhibits experiments illustrating the application of fuzzy logic models and the ANFIS for predicting 

path loss in wireless communication systems. In their work, [48] leveraged measured Received Signal Strength 

(RSS) data to develop a path loss prediction model based on ANFIS. The findings indicated that the ANFIS model 

yielded reduced errors, underscoring its reliability in predicting path loss for mobile communication systems in 

comparison to the, Okumura-Hata, and COST-231 model. In order to lower prediction errors, [49] developed a 

hybrid approach that combines fuzzy logic with k-means clustering. The model simultaneously used multiple path 

loss prediction algorithms and region topographical variability. When compared to drive-test measurement data, 

the k-means fuzzy scheme demonstrated a decreased prediction error of 2.67%, demonstrating a considerable 

improvement over conventional model. 

To predict path loss in LTE-1.8 GHz networks, [50] employed a hybrid approach integrating ANN and Neuro-

Fuzzy logic. The research utilized GPS measurements and cellular signals, combining the shared attributes of 

fuzzy logic and artificial neural networks. The proposed models exhibited enhanced accuracy compared to 

established path loss prediction models like COST Hata, Ikegami-Walfisch, and ITU-R P1546-4. [51] utilized 

ANFIS to refine function approximation and model tuning for analyzing broadcast within metropolitan 

environments, particularly with buildings and structures. In comparison to the Bertoni-Walfisch model, the ANFIS 

model performed better, exhibiting lower errors and higher accuracy in urban propagation settings. [52] modified 

the Hata model for PL prediction by utilizing spline interpolation and fuzzy logic procedures. 65 offline trainings 
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with several fuzzified inputs were used to train spline interpolation and, fuzzy logic was used to increase the model 

sensitivity. For the study region, the use of spline interpolation in conjunction with fuzzy logic reduced route loss 

by 1.94 dB. 

[53] utilized the Adaptive Neuro-Fuzzy Inference System model, trained with received signal strength data, to 

investigate the broadcast of multi-transmitter radio waves. They conducted a comparative analysis between 

various empirical models, including Hata, Ericsson, COST-231, Egli, and ECC-33, against the proposed model. 

The ANFIS model yielded attributes essential for radio network planning, as indicated by the outcomes. 

Additionally, [54] introduced a fuzzy-logic approach for secure path loss forecast in cellular mobile networks. 

The propagation medium was classified into well-defined fuzzy sets by the fuzzy-logic model, which also worked 

with imprecise notions. The model performed better than the HATA model, demonstrating a notable variation in 

route loss rate and offering precise base station position predictions. 

[55] presented a model for forecasting path loss data, combining artificial neural networks (ANN) and fuzzy logic. 

In this hybrid approach, fuzzy logic incorporated expert knowledge, while the neural network learned interference 

patterns. The Neuro-Fuzzy model demonstrated superior performance compared to their prior ANN model, 

thereby enhancing interference path loss modeling. [56], in contrast to Hata's empirical approach, employed a 

binary phase shift keying (BPSK) method with modulated signals, integrating fuzzy logic for path loss 

determination. The model, utilizing fuzzy logic, effectively predicted route loss in wireless systems across various 

signal variation regimes. 

[57] introduced a fuzzy logic strategy for anticipating path loss in cellular mobile systems. The model categorized 

the broadcast routes into two environment densities, demonstrating superior path loss prediction performance 

compared to the conventional HATA model. Employing fuzzy logic, [58] identified unknown path loss in urban 

streets from a set of known values, enhancing the prediction of unfamiliar path loss compared to traditional multi-

ray models. Additionally, [59] developed a multi-layer fuzzy logic-based system (MLFS) for forecasting mobile 

path loss in forested environments. This model, incorporating a supervisory layer and linguistic rules, 

outperformed traditional empirical mathematical models, providing accurate results for path loss slopes. 

Furthermore, [60] proposed a fuzzy linear regression model for path loss in forested areas, considering tree density 

impacts. The fuzzy regression model exhibited improved path loss prediction in forested regions, aligning more 

closely with observed data than traditional regression models. 

[61] introduced a model based on ANFIS for estimating route loss in the VHF band. The optimized ANFIS model 

demonstrated superior performance, exhibiting the lowest Root Mean Square Error and Mean Error compared to 

widely used conventional models. [62] presented a fuzzy-logic model designed for predicting path loss in a 

metropolitan context. When trained with driving test data, this model surpassed traditional physical and empirical 

models like the Hata model and free space propagation model in terms of efficiency, speed, and accuracy. [63] 

proposed an ANFIS-based technique for predicting path loss in the extremely high-frequency band for multi-

transmitter radio propagation. The comparison with empirical models, including HATA, COST 231, Egli, and 

ECC-33, demonstrated improved path loss prediction using the optimized five-network structure of ANFIS. 

Table II. Hybrid Deep Learning Architecture Pathloss Prediction 

Ref 

Hybrid Deep 

Learning 

Architecture 

Baseline 

Algorithms 

Indoor / 

Outdoor 
Generation Results 

[40] ANN-CNN Stochastic 

models, Ray-

tracing methods 

Not 

specified 

5G Hybrid model (ANN-CNN) 

improves path loss prediction 

accuracy compared to 

stochastic models and ray-

tracing methods in mobile 

communication systems 
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Ref 

Hybrid Deep 

Learning 

Architecture 

Baseline 

Algorithms 

Indoor / 

Outdoor 
Generation Results 

[41] CNN-XGBoost Stacked 

generalization, 

Feature 

concatenation 

Not 

specified 

5G and IoT CNN-XGBoost predicts path 

loss with higher accuracy 

compared to stacked 

generalization and feature 

concatenation in 5G and IoT 

communication systems 

[42] 3D ray tracing-

CNN 

Deterministic 

Channel Models 

Outdoor 5G 3D ray tracing Hybrid model 

(3D ray tracing-CNN) enhances 

path loss prediction compared 

to Deterministic Channel 

Models in outdoor millimeter 

wave channels 

[43] CNN-NGBoost CNN  Not stated Not stated Hybrid model (CNN-NGBoost) 

predicts path loss with 

improved performance in 

probabilistic path loss 

prediction in urban 

environments 

[45] AE-GAN Conventional 

models 

Outdoor 5G Hybrid model (AE-GAN) 

performs better than 

conventional models for path 

loss prediction at 3.5 GHz band 

[44] CGG-16-

ResNet-50 

Ray tracing Not 

specified 

Not stated VGG-16-ResNet-50 predicts 

path loss exponent and 

shadowing factor with 88% and 

77% accuracy, respectively, 

compared to ray tracing in 

wireless channel systems 

[46] ResNet50V2-

regression 

MLP deep 

learning models 

Not stated 5G Hybrid model (ResNet50V2-

regression) accurately predicts 

path loss for multiple 

parameters and environments 

[47] AE-CNN Empirical, 

Deterministic 

methods, and 3D 

ray tracing 

Outdoor 5G AE-CNN hybrid model 

outperforms state-of-the-art 

empirical and deterministic 

methods in millimeter wave 

path loss prediction for 5G 

communication network 
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Table III. Fuzzy Logic-Based Pathloss Prediction 

Ref 
Fuzzy Logic 

Model 

Baseline 

algorithms 
Environment Generation Results 

[49] Fuzzy Logic, 

K-Means 

Clustering 

free space loss, 

Walfisch–

Ikegami, HATA, 

ECC-33 

Not specified Not 

specified 

When compared to traditional 

models, the accuracy of the 

path loss prediction was 

improved. 

[48] ANFIS Free-space, 

Okumura-Hata, 

COST-231 

Not specified Not 

specified 

Path loss prediction was 

improved and the model 

remained stable. 

[50] ANN, Neuro-

Fuzzy Logic 

COST 231-Hata, 

Ikegami-Walfisch, 

ITU-R P1546-4 

Outdoor 4G The techniques improved the 

network's path loss 

prediction. 

[52] Fuzzy Logic, 

Spline 

Interpolation 

Hata model Not specified Not 

specified 

the proposed model reduced 

path loss by 1.94dB 

[51] ANFIS Bertoni-Walfisch Urban areas Not 

specified 

prediction error was 

decreased 

[53] ANFIS Hata, WI, SUI, 

Ericsson, COST-

231, Egli, ECC-33 

Not specified Not 

specified 

the model created proves 

positive and favourable 

attributes in predicting path 

loss 

[55] Modulated 

ANN, Fuzzy 

Logic 

Previous ANN 

model 

Not specified Not 

specified 

The model improved the 

prediction of interference-

related path loss in airplane 

[54] Fuzzy Logic HATA Not specified Not 

specified 

The suggested model excels 

in predicting path loss when 

applied to an uncharted 

environment 

[56] BPSK Hata’s empirical 

formula 

Not specified Not 

specified 

The model improved the 

prediction of path loss for 

different kinds of modulated 

signals 

[58] Fuzzy Logic Multi-ray models’ Urban streets Not 

specified 

Fuzzy logic models provided 

a better prediction of path 

loss 

[57] Fuzzy Logic Conventional 

HATA model 

Not specified Not 

specified 

In terms of path loss 

prediction accuracy, the 

model performs better than 

the traditional HATA model. 
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Ref 
Fuzzy Logic 

Model 

Baseline 

algorithms 
Environment Generation Results 

[59] Multi-layer 

Fuzzy Logic 

Conventional 

empirical 

mathematical 

model 

Not specified Not 

specified 

The fuzzy logic models 

provided better prediction 

accuracy of path loss 

[61] ANFIS Hata, COST 231, 

Egli, ECC-33 

Not specified Not 

specified 

Experimental results indicate 

the fitness of the proposed 

model for path loss prediction 

[60] Fuzzy Linear 

Regression 

Conventional 

regression models 

of previous 

research 

Forest areas Not 

specified 

When compared to traditional 

empirical models, the fuzzy 

logic technique yielded an 

accurate estimate of path loss. 

[63] ANFIS HATA, COST 

231, Egli, ECC-33 

Not specified Not 

specified 

The proposed model shows 

higher accuracy and 

efficiency in propagation 

path loss prediction 

[62] Fuzzy Logic Free space 

propagation 

model, Hata model 

Metropolitan 

environment 

Not 

specified 

The proposed model was 

efficient, faster, and accurate 

in the prediction of 

propagation path loss 

2) Pathloss Prediction Based on ANN 

This section delves into studies employing Artificial Neural Networks (ANN) for predicting path losses in wireless 

communication systems. [64] proposed a multilayer perception ANN to forecast path loss, precisely predicting 

route loss for a wireless network. Principal Component Analysis (PCA) was utilized to extract low-dimensional 

environmental aspects, integrating them with base station and receiver data. This model outperformed the α − β 

path loss model and Close-In Path loss model. [65] suggested a Back Propagation-ANN for radio wave 

propagation and route loss prediction, demonstrating improved accuracy over drive test data. [66] explored 

MLPNN and Radial Basis Function Neural Network (RBFNN) for path loss prediction in LTE networks. RBFNN 

outperformed MLPNN. [67] proposed a tripod machine learning framework involving PCA-based feature 

extraction, Gaussian process-based variance analysis, and ANN-based multi-dimensional regression, 

outperforming traditional models. 

[68] compared ANN-based and fundamental models for route loss estimation, concluding that the ANN model 

outperformed Hata, Egli, COST-231, Ericsson model, and other empirical path loss models. [69] suggested an 

ANN-based multi-dimensional regression framework for path loss modeling in urban settings, surpassing 

traditional linear models. [70] compared ANN models in suburban and urban settings, revealing the ANN model's 

superiority over the COST-231-Walfisch-Ikegami model. [71] compared ANN with random forest for path loss 

modeling in NB-IoT networks, demonstrating equivalent performance. 

[72] investigated ANN parameters for path loss prediction in very high-frequency wireless channels, showing 

ANN's superior prediction accuracy over Hata, COST 231, ECC-33, and Egli models. [73] conducted a 

comparative analysis of 60 GHz path loss channel modeling, favoring MLP over RBF. [8] proposed an ANN 

model for predicting macro cell path loss, surpassing ITU-R P.1546 and Okumura-Hata model. [77] forecasted 

path loss in a smart campus setting using ANN and random forest, enhancing prediction accuracy. 
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[29] adopted a four-model approach for machine learning path loss prediction in aircraft cabin conditions, 

demonstrating data expansion's efficacy. [79] presented a streamlined machine learning-based air-to-ground route 

loss modeling in urban settings. [80] characterized path loss for UAV-enabled communication in smart farming 

situations, employing ANNs and SVRs with high accuracy. 

[76] investigated machine learning techniques for path loss prediction at 3.7 GHz in a rural setting, favoring ANN 

for its better prediction results. [77] explored machine learning models, including ANN and random forest, for 

path loss prediction in a smart campus setting. [78] compared path loss prediction using ANN and statistical 

models, revealing ANN's superior performance. 

For aircraft cabin conditions, [29] suggested a four-model approach based on machine learning path loss 

prediction. To guarantee the dependability and stability of the wireless communication in the cabin, they looked 

into the factors of path loss. AdaBoost, Random Forest, Support Vector Regression (SVR), and BPNN were all 

used in the study. While the SVR handles non-linear regression issues, the BPNN models the linear relationship 

between inputs and outputs. Two random processes—feature selection and sample selection based on bagging—

are managed by the random forest. Boosting algorithms, or AdaBoost methods, can be used on top of the base 

learner layer. It was discovered that the data expansion approach improved prediction performance with a small 

number of measurement samples at different frequencies. A streamlined machine learning-based air-to-ground 

route loss modeling for an urban setting was presented by [79]. The study included several recommendations for 

building an empirical route loss model for radio frequency communications from the air to the ground. They 

suggested several regression techniques, such as the ANN, KNN, and regression tree (RT). The GPS coordinates 

of ground receivers and transmitters for unmanned aerial vehicles (UAVs) were employed in the study. Through 

comparison with numerical findings, the proposed model's validity was confirmed. The study's findings indicate 

that the suggested approach enhanced path loss prediction. Path loss characterization machine learning methods 

for a ground sensor were presented by [80] for UAV-enabled communication in smart farming situations. They 

used ANNs and SVRs to measure data in various contexts. The suggested SVR and ANN models can best 

characterize path loss in a smart farming scenario, with corresponding accuracy of 95% for SVR and 97% for 

ANN, according to the findings of a comparison of their performance with the GUT-R model. 

[70] compared ANN-based models for path loss prediction in an indoor setting using a multilayer perception and 

a generalized regression neural network (Radial Basis Function). We looked into prediction error, standard 

deviation, and root mean square error of the suggested network's performance. Measured data gathered in the 

1890 MHz frequency was used to train the model. Experimental outcomes Results demonstrated that when 

compared to the empirical model with high accuracy, the model produced high accuracy.  

For propagation path loss in a mining scenario, [81] presented an ultra-wide band (UWB) propagation channel 

model. The path loss attenuation change as a function of frequency and distance was the main emphasis of the 

model. Multiple experiments were conducted to confirm the validity of the model, which was trained using 

performance sufficiency. The model's accuracy in accurately predicting the received power levels was estimated 

as a means of testing the model. In the mine context, the suggested model generated good prediction accuracy 

when compared to empirical models based on experimental findings. Three methods are used in the machine 

learning framework [67] to predict path loss: PCA-aided feature extraction, Gaussian process-based variance 

analysis, and ANN-based multi-dimensional regression (ANN). In order to decrease the dataset's dimension, the 

researchers employed PCA for feature extraction. On the other hand, the Gaussian process was used to learn the 

shadowing effects, while the ANN learned the path loss structure from the dataset with reduced dimension. The 

findings of the study demonstrated that, when compared to traditional linear path loss models and log-normal 

shadowing models, the combined approach of the path loss model and shadowing model gave more flexible and 

accurate results.  

An ultra-high frequency path loss model for heterogeneous networks utilizing a machine learning was proposed 

by [82]. Several elementary neurons spread over multiple layers comprised the MLPNN they projected. Using 

inputs from conventional propagation models, the proposed model is based on MLPNN, which used the 

backpropagation technique. In comparison to the ITU-R P.1812-4 and the Standard Propagation Model (SPM), 
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the suggested model outperformed the other models and was able to forecast the path loss for heterogeneous 

networks with accuracy. Table 5 provides an overview of research that used ANN to forecast path loss in mobile 

wireless communication systems. 

Table IV. Artificial Neural Network Based Pathloss Prediction 

Ref Model Key features Environment Results 

[64] Multilayer 

Perception ANN 

PCA for environmental 

feature extraction 

Not specified Outperformed Close-In Path 

loss model and α−β path loss 

model 

[65] Back Propagation-

ANN 

Minimization of drive test, 

grid division 

Not specified Accurate prediction with 

minimal cost 

[66] RBFNN and 

MLPNN 

LTE networks, 

smartphone-based testing 

Indoor RBFNN outperformed 

MLPNN 

[67] ANN ANN-based regression, 

Gaussian process, PCA 

Not specified Accurate path loss and 

shadowing modeling 

[71] Comparison of 

ANN and random 

forest 

Path loss modeling in NB-

IoT networks 

Not specified Similar performance 

between ANN and random 

forest 

[72] Various ANN 

architectures 

VHF wireless channels, 

ECC-33, Egli, Hata, COST 

231 models 

Not specified ANN-based prediction with 

better accuracy than 

traditional models 

[73] Comparative study 

of ANN and RBF 

60 GHz path loss channel 

modeling in a mining 

environment 

Mining site MLP had less error 

compared to RBF 

[8] ANN for macro cell 

path loss prediction 

Simple neuron model, 

feed-forward model 

Not specified The proposed model 

outperformed Okumura-

Hata model and ITU-R 

P.1546 

[68] ANN MLPNN parameters 

variation 

Not specified Outperformed basic 

empirical path loss models 

[69] ANN modeling for 

urban environment 

Three-layer MLPNN, 

activation functions 

Not specified More accurate and flexible 

compared to linear models 

[70] MLPNN and Radial 

Basis Function 

1890 MHz band Indoor High accuracy compared to 

empirical model 

[81] ANN UWB propagation channel 

model 

Mines High prediction accuracy 

compared to empirical 

models 

[29] BPNN Random Forest, AdaBoost, 

and Support Vector 

Regression 

Aircraft cabin Enhanced prediction 

performance with data 

expansion method 

[79] Regression 

algorithms 

including KNN, 

RT, ANN 

Air-to-ground path loss 

modeling in urban 

environment 

Outdoor Improved path loss 

prediction 
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Ref Model Key features Environment Results 

[80] SVR and ANN  Ground sensor for UAV-

enabled communication 

Not specified Optimally characterized path 

loss in smart farming 

scenarios 

[74] ANN Log-distance and Cost 231-

Hata 

Not specified Enhanced signal power path 

loss determination 

[75] ANN SVM  Not specified PCA-based prediction model 

produced better results 

[76] ANN, SVM, 

random forest, 

KNN 

Extended Hata Not specified Outperformed empirical 

models and suggested ANN 

[77] ANN and random 

forest 

COST-231 Hata Not specified 

 

Improved prediction 

accuracy compared to 

COST-231 Hata model 

[78] ANN  Comparison with 

Statistical model 

Not specified 

 

ANN performed better than 

mixture models 

[82] MLPNN ITU-R P.1812-4 and 

Standard Propagation 

Model 

Not specified 

 

The suggested model 

outperformed ITU-R 

P.1812-4 and Standard 

Propagation Model 

5. Future Research: Addressing Challenges and Adopting a Fresh Perspective  

Numerous obstacles are encountered by existing path loss models, prompting exploration into a novel realm of 

path loss prediction facilitated by recent advancements in AI, robust deep learning structures, machine learning 

approaches, and computational intelligence methods. This section delves into several of these challenges, 

providing comprehensive coverage and suggesting avenues for future research in the field of path loss prediction. 

A. Modelling with Deeplearning 

Current investigations into path loss must thoroughly examine the various challenges encountered by deep 

learning models. One key challenge is the time-intensive nature of training a deep learning architecture; however, 

once trained, offline inferencing can be conducted swiftly and in real-time. Fortunately, recent advancements in 

graphics processing unit architecture and high-performance computing have significantly reduced deep learning 

model training times. Despite these improvements, the individual cost of acquiring such systems remains high. A 

viable alternative is the use of cloud-based infrastructure, where researchers have successfully trained and 

implemented robust deep learning solutions across diverse domains. This avenue holds promise for future path 

loss prediction modeling research. 

While not a groundbreaking concept, it has been implemented in numerous studies. For instance, Thrane et al. 

[40] proposed a fusion of traditional artificial neural network (ANN) with convolutional neural network (CNN) – 

referred to as ANN-CNN – for predicting path loss in mobile communication systems based on input from satellite 

photos. In this architecture, the ANN computes numerical characteristics, while the CNN processes the satellite 

images. It was found that, in comparison to stochastic models and ray-tracing techniques, this architecture 

increased the path loss forecast accuracy. Which deep learning architecture offers the best performance for 

creating effective route loss predictive solutions is still a challenge for the path loss predictive modelling research 

community. In addition, the application of existing deep learning technologies should be reckoned with for the 

creation of precise PL prediction models for future technologies. 
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B. Feature Engineering 

Finding discriminative features for the system's development is a crucial step in creating a path loss prediction 

model. There are two types of characteristics or parameters utilized in path loss modelling: environment features 

and system features. System attributes such as carrier frequency, antenna gains, transmitter and receiver heights, 

operating frequency, and the angle between the line of sight and the horizontal plane are contingent upon the 

specific system under consideration. These attributes, being independent of the environment, can be extracted 

autonomously. Conversely, factors like terrain, vegetation, and building conditions are environment-dependent 

and are influenced by local climate and weather patterns. Generally, data related to land cover, topographic maps, 

and three-dimensional mapping contribute to extracting parameters from databases. Characteristics derived from 

weather conditions, such as temperature, precipitation rate, and humidity, further augment the overall dataset. 

Majority of research so far have focused on hand-engineering characteristics in order to construct path loss 

models; yet, there are issues with this approach's generalizability. The application of the empirical propagation 

models is limited because they primarily rely on measurement data from particular contexts of interest. In order 

to overcome this restriction, ray-tracing-based techniques are typically used; unfortunately, they are 

computationally costly. The models' inability to be broadly applicable is further hampered by the lack of manual 

feature extraction tools that could be used to describe the intricate geometric and physical characteristics of the 

propagation environment. Several unneeded and superfluous parameters have been used in earlier research. Filter, 

wrapper, and embedded feature selection techniques must be used in future research to choose pertinent 

parameters for the development of a model for predicting path loss with the capability to extrapolate across diverse 

scenarios. Therefore, a thorough comparison between models based on manually engineered features and models 

based on automatically extracted features utilizing architectures like convolutional neural networks is required. 

C. Algorithms and Hyperparameter Settings 

Choosing the right algorithms is crucial to creating a path loss prediction system that is both accurate and efficient. 

Furthermore, it will be crucial to fine-tune these algorithms' hyperparameters in subsequent studies. There isn’t 

enough research in the literature currently available to thoroughly examine how well the most popular algorithms 

work for creating path loss prediction models. To choose the best algorithm for the PL prediction system, 

consideration can be given to various aspects, including the method's complexity and accuracy. The algorithms' 

hyperparameter values are established prior to the start of the learning process. There are several methods for 

choosing the ideal hyperparameter settings, including grid and random searches, and bayesian optimization. The 

settings for the hyperparameters are quite important. Even so, in order to create path loss models, researchers have 

looked into a variety of neural network topologies, system settings, and learning techniques. Deep learning models 

form the basis of these in large part. Hence, a comprehensive comparative study is essential to gain deeper insights 

into incorporating alternative methodologies within computational intelligence.  

D. Performance Metrics for Model Evaluation 

Previous research has used various performance measures to assess how well their path loss prediction models 

work. Various metrics, such as mean squared error, root mean square error, correlation factor, maximum 

prediction error, mean absolute error, mean absolute percentage error, standard deviation error, regression 

coefficient, prediction time, and accuracy, serve as performance measures in evaluating path loss predictive 

models. Despite the wide array of metrics available, the lack of a universally accepted standard arises from the 

diverse performance measurements employed in different studies. It is challenging to fairly compare the 

performance of previous research that have been published in the literature as each study presents one or more of 

these metrics. This difficulty should be addressed in future research by offering a thorough assessment of previous 

experiments utilizing performance measurement clusters. This will shed additional light on the metrics or sets of 

metrics that should be consistently employed when evaluating path loss prediction systems. 

6. Conclusion 

This thorough review paper has extensively investigated the present status of path loss prediction using 

methodologies derived from machine learning and deep learning techniques. It delves into the foundational 
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principles of path loss and its influence on wireless communication systems, addressing the drawbacks of 

traditional empirical and deterministic models. The paper emphasizes the strengths of machine learning 

approaches in capturing the intricate and dynamic characteristics of wireless propagation environments. 

Moreover, the research review delineates the trends in publications and provides a consolidation and examination 

of studies released on the prognosis of path loss employing models from machine learning and deep learning. 

Notably, the survey identifies a growing interest in deep learning architectures within the research community, 

showcasing superior performance compared to traditional machine learning techniques like the Artificial Neural 

Network. Research employing deep learning for the prediction of path loss heavily depends on the inherent 

mechanisms for automated extraction of features present in deep learning architectures, in contrast to an 

exhaustive process of selecting features. The surveyed studies predominantly focus on urban, suburban, rural, or 

various environments. Challenges in path loss prediction using machine learning approaches are deliberated, and 

the paper concludes by suggesting future research directions to guide the resolution of these challenges. 
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