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Abstract: - Agile Software development is an iterative and flexible methodology that empowers teams to 

continuously adapt to changing requirements, collaborate closely, and deliver high quality software through rapid 

feedback loops. Traditional project management in Agile environments remains predominantly manual, leading 

to time consuming documentation, imprecise task breakdowns, reactive risk assessments, and inconsistent 

developer evaluations. This research introduces an AI driven project management platform that leverages Natural 

Language Processing, Machine Learning, and Predictive Analytics to automate critical workflows and enhance 

decision-making. The proposed system integrates four key components, automated documentation and 

summarization, an NLP-based speech-to-text module, abstractive summarization combined with sentiment 

analysis for generating structured project plans and meeting minutes, and an AI-based task extraction and 

prioritization engine that processes Software Requirement Specification documents using Named Entity 

Recognition, dependency parsing. And topic modelling. A hybrid predictive risk assessment module combining 

supervised and reinforcement learning approaches improves story point estimation and effectively predicts sprint 

risks. Developer evaluation is an automated system for analysing GitHub pull requests using machine learning-

based metrices extraction and quality prediction, ensuring higher code standards and better collaboration. The 

platform utilizes data from open-source repositories and industry datasets. Integrating AI significantly enhances 

workflow efficiency, task accuracy, and early risk identification, ultimately improving team productivity and 

overall project success. 
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1. Introduction 

Agile software development has revolutionized the manage ment and delivery of modern software projects. It 

promotes an iterative and adaptive approach that emphasizes flexibility, collaboration, and continuous feedback 

to address evolving requirements [1]. Unlike traditional waterfall methodologies, Agile allows for the division of 

development cycles into smaller, more manageable sprints, which enables faster de livery of functional software 

[2]. This approach enhances efficiency, minimizes risks, and ensures that stakeholder ex pectations are met. 

Despite these advantages, Agile techniques present several challenges that can impede project efficiency and 

success, highlighting the need for advanced technical solutions [1]. 

One of the significant challenges in Agile environments is the process of recording and documenting meetings, 

which play a crucial role in teamwork and decision-making. Manual notetaking during meetings is not only time-

consuming but also prone to inaccuracies. Important points and decisions may be missed when participants focus 

on note-taking in stead of engaging in the discussion. Studies have indicated that professionals, particularly 

managers, spend a substantial amount of time in meetings, and unproductive meetings can lead to significant 

financial losses, which negatively affect project outcomes. Software companies working on large scale projects 

often face employee turnover, requiring new team members to quickly familiarize themselves with the information 

produced by their predecessors. The traditional knowledge transfer process can take 2-3 months, during which 
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new employees must review and understand all relevant docu mentation. This phase is not only time-consuming 

but also prone to misinterpretation and the risk of missing critical tasks, which can disrupt project continuity. 

Moreover, it often lacks consistency, which can lead to incomplete or inaccurate task breakdowns. Additionally, 

Manual code review processes are time-consuming and often prone to inconsistencies due to varying reviewer 

expertise, subjective judgments, and human errors [23]. In modern developer assessment, evaluating coding skills 

accurately becomes challenging, leading to potential biases and inefficiencies. Automating PR analysis can 

enhance consistency, reduce review time, and improve overall code quality assessment. 

Inaccurate risk prediction is another persistent challenge in Agile development. Failing to identify risks early or 

assigning incorrect story points to tasks can create uncertainty within sprints [20]. These inaccuracies can lead to 

unforeseen obstacles, causing delays and disruptions to the project’s timeline and budget. Without accurate 

estimations, teams often struggle to allocate work effectively, which can hinder project success [19]. 

To address these issues, this study presents a comprehensive AI-driven project management and resource 

optimization platform that integrates Natural Language Processing (NLP), Machine Learning (ML), and 

Predictive Analytics. The plat form comprises four core components. 

 Contextual Summarization Intelligent Document Generation Utilizes NLP and sentiment analysis to automate 

meeting transcription, extract meaningful insights, and generate structured reports, thereby reducing manual 

documentation efforts and enhancing decision-making in Agile environments.  

AI-Based Task Creation Prioritization: Extracts tasks from SRS using NLP and machine learning to dynamically 

generate and prioritize tasks, establishing an automated workflow that improves task management efficiency and 

reduces the workload of project managers. 

 Intelligent Developer Skill Assessment: Analyses GitHub pull requests and evaluates developer skills based on 

code quality metrics such as complexity, cohesion, and maintain ability [25]. Employing machine learning models 

ensures objective, unbiased developer evaluations, thereby enhancing resource allocation within development 

teams.  

Predictive Risk Analysis Sprint Management: Enhance story point estimation by integrating a Random Forest 

(RF) classifier with a Deep Q-Network (DQN) model, improving predictive accuracy through supervised and 

reinforcement learning. The model’s predicted values are compared with the Scrum team’s estimates to detect 

potential overestimations and underestimations. By analysing these discrepancies, the system effectively predicts 

sprint risks and facilitates proactive risk mitigation, leading to improved sprint outcomes. 

By integrating AI-driven automation into Agile project management, this research aims to address critical 

limitations in manual processes, such as contextual summarization, in telligent document generation, task 

management, developer assessment, and risk prediction. Automating these tasks re duces manual effort, allowing 

teams to focus on high-priority activities. It also ensures objective role assignments and helps mitigate potential 

risks. Ultimately, this AI-powered approach enhances efficiency, productivity, and project outcomes, en abling 

Agile teams to adapt to dynamic project conditions. 

2. Literature Review 

Agile project management has used AI-driven automation to enhance efficiency, accuracy, and decision-making. 

Several studies have explored the automation of Agile environments. Our proposed system identifies existing 

limitations in con textual summarization for Agile documentation, automated task extraction from requirement 

specifications, evaluation of developer performance, and predictive risk identification in sprints. These 

advancements streamline project workflows, reduce manual effort, and improve collaboration among Agile teams, 

yet there remains a need for an integrated AI-powered framework that combines these components into a reliable 

system.  

Modern automatic speech recognition (ASR) systems significantly enhance meeting documentation by accurately 

transcribing spoken content. OpenAI’s Whisper, trained on 680,000 hours of multilingual data, offers robust 

transcription across various accents and domains without fine-tuning, achieving near human-level performance 
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[11]. This advancement addresses a critical challenge in meeting documentation by generating precise transcripts, 

reducing manual effort.  

Since meeting transcripts are lengthy, abstractive summarization condenses them into concise and coherent 

summaries. Transformer-based models such as BART, T5, and PEGASUS have demonstrated strong performance 

in text summarization [13], [14], [15]. PEGASUS, designed for summarization tasks, achieves state-of-the-art 

results by learning to predict important sentences. These models can be fine-tuned using datasets like the AMI or 

ICSI meeting corpora to improve meeting summarization efficiency [10].  

Sentiment analysis enhances meeting documentation by identifying emotional tones such as satisfaction, disagree- 

ment, or engagement. Rule-based models like VADER provide quick sentiment polarity detection, making them 

effective for short utterances [16]. However, transformer-based models like RoBERTa offer higher accuracy by 

capturing nuanced contextual sentiment [17]. RoBERTa fine-tunes pre-trained language models for sentiment 

classification, improving interpretation in meeting transcripts. Combining VADER’s quick assessments with 

RoBERTa’s deep contextual understanding ensures a comprehensive sentiment analysis, enabling better insights 

into team morale and discussion dynamics, ultimately supporting informed decision-making in meetings.  

Software Requirements Specification (SRS) documents are vital for software development, containing both 

functional and non-functional requirements. However, translating these requirements into actionable tasks 

remains challenging. As Haris et al. note, the SRS document serves as the primary reference to ensure system 

functionality conformance [5]. 

Despite this importance, developers often measure product quality based only on released software, neglecting 

the original requirements. Traditional task extraction methods rely on manual processes, where developers read 

through documentation to identify tasks. This approach is time-consuming and prone to inconsistency, as different 

developers may extract different tasks from the same documentation. Additionally, the knowledge transfer period 

for new team members further exacerbates these inefficiencies. Recent research has explored automated task 

extraction. Atole et al. developed ”TASKNAVIGATOR,” a tool that uses natural language processing (NLP) to 

automatically extract task descriptions from software documentation [4]. However, much of the research on 

feature extraction has focused on source code rather than SRS documents. Extracting features from SRS 

documents has its advantages, as they represent the original intent for system functionality and serve as the basis 

for validation. Agile methodologies prioritize iterative development and task prioritization. Traditional methods, 

such as the MoSCoW technique, often rely on subjective assessments, failing to utilize available data or account 

for task interdependencies [9]. AI-driven approaches can consider multiple factors simultaneously, improving task 

prioritization and maximizing value delivery in each sprint.  

Recent research has shifted towards machine learning models for software defect prediction and maintainability 

assessment. Studies in software quality metrics have shown that code complexity, cohesion, and coupling 

significantly impact software maintainability [24]. Furthermore, deep learning techniques like CodeBERT and 

Graph Neural Networks (GNNs) have enhanced automated analysis capabilities [26]. This paper expands on these 

foundations by proposing a machine learning-based approach for GitHub pull request (PR) quality assessment. 

Unlike existing approaches that focus solely on static analysis, our method integrates real-time API-driven 

analysis with predictive modelling, which enhances automation and consistency in PR evaluations. While 

previous studies have explored machine learning for defect prediction and maintainability, there is limited 

research on real-time, API driven PR quality evaluation within collaborative environments like GitHub. Most 

current solutions rely on offline batch processing, not integrating seamlessly into developers’ work f lows. 

Additionally, past studies have not sufficiently addressed model interpretability or the contribution of various 

feature sets to PR quality predictions. Another significant gap is the lack of multi-language support, as most 

existing models are trained on a single programming language, limiting their generalizability [27]. This research 

aims to address these gaps by developing an end-to-end automated PR analysis system that incorporates real-time 

API processing, multi-language support, and enhanced model interpretability [28].  

Identifying risks in a sprint is vital for Agile development, as accurate story point estimation enables teams to 

assess progress, prioritize user stories, plan iterations, and allocate resources effectively. Several studies have 
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explored risk identification using different methodologies. R. Adel and H. Harb proposed a model using the Q-

learning algorithm to assess risk factors like communication, coordination, and project management, structuring 

these risks into a Q-table for systematic learning [22]. Another study integrated Long Short-Term Memory 

(LSTM) and Recurrent Highway Networks to create a predictive model for story point estimation, improving 

accuracy in effort estimation [20]. Some researchers have used fuzzy logic tools to develop qualitative risk models, 

while quantitative risk assessments have been explored as well [19]. O. Kovalenko and O. Smirnov introduced a 

system that uses Failure Tree Analysis (FTA) for systematic risk identification [21]. Additionally, Monte Carlo 

simulations have been employed in Software Project Management (SPSM) models to predict project outcomes 

and risks [18]. The proposed predictive system identifies sprint risks by estimating story points with high accuracy. 

It uses a hybrid approach, combining a Random Forest (RF) classifier and a Deep Q-Network (DQN) model, 

integrating both supervised and reinforcement learning techniques. This model iteratively learns from past 

performance, refining its accuracy and adapting to changing project conditions, which is essential for maintaining 

timelines and improving sprint planning. 

 Existing research has validated the effectiveness of AI in Agile project management, but it typically focuses on 

individual functionalities rather than a unified AI framework. Most studies explore AI applications in isolation, 

without com bining them into a single AI-driven Agile project management system. This study seeks to address 

this gap by developing an integrated AI-driven project management framework that automates documentation, 

optimizes sprint workflows, eval uates developer performance, and enhances risk prediction, ultimately improving 

the overall effectiveness of Agile project execution. 

3. Methodology 

The research methodology is designed to ensure accuracy, reliability, and validity in the findings, with data 

collected from diverse sources, including real-time meeting recordings, Agile sprint reports, and software 

repositories. Speech-to-text models are employed to transcribe meeting discussions, while Agile project 

management tools like Jira and Trello offer structured data for analysis. The specific methodologies used for each 

key component of this research are outlined below. 

A. Contextual Summarization and Intelligent Document Generation  

Our pipeline transforms meeting audio into a structured document containing transcribed dialogue, identified 

speakers, an abstractive summary, and sentiment analysis. Speech recognition is performed using OpenAI’s 

Whisper model, which converts spoken language into text while handling multiple languages and accents [11]. 

The transcript is then processed with Pyannote for speaker diarization, assigning labels to different utterances and 

improving transcript clarity in multi participant meetings [12].  

To summarize long transcripts, we use transformer-based abstractive summarization models such as BART [13], 

T5 [14], and PEGASUS [15]. These models generate concise summaries capturing key decisions, action points, 

and discussions, with the best output selected using ROUGE scores.  

Sentiment analysis is applied to understand the emotional tone of meetings. We employ a dual approach, using 

VADER for quick sentiment scoring and RoBERTa, a deep-learning model fine-tuned for sentiment classification, 

for nuanced emotional interpretation [16][17]. Aggregated sentiment scores generate sentiment trend charts, 

providing insights into emotional fluctuations during discussions.  

The final output is a structured document integrating the transcript, summary, and sentiment analysis. Each 

speaker’s contributions are timestamped, and visual elements such as sentiment trend graphs enhance usability. 

This AI-driven documentation system improves efficiency, reduces manual effort, and provides deeper insights 

into meeting discussions. 

B. Extract tasks from SRS and prioritization  

The preprocessing stage prepares the SRS document for analysis by converting it into a structured format and nor- 

malizing text. This includes 
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1) Document parsing to extract text content while preserving structural information  

2) Sentence segmentation to divide text into individual sentences   

3) Text normalization, including removal of stop words and special characters  

4) Part-of-Speech (POS) tagging to identify the grammatical role of each word  

Unlike prior methods relying on predefined requirement lists, our approach processes complete SRS documents 

directly, eliminating manual preparation and enhancing practicality. 

To identify requirement sentences, we use a pattern-based approach with POS tagging. Requirement sentences in 

SRS documents often follow syntactic patterns. Following Haris et al., we identify common POS patterns like 

“The system shall [verb] [object]” or “The [actor] must be able to [verb] [object],” enabling automatic requirement 

identification [12].  

Once identified, tasks are extracted using dependency parsing, which captures grammatical relationships. Our 

approach extends Atole et al. by incorporating additional features [11]. 

1) Identification of modal verbs (shall, must, should) that indicate requirements  

2) Extraction of action verbs that indicate specific tasks  

3) Identification of direct objects that represent the target of actions  

4) Recognition of conditional clauses that specify constraints or conditions  

Extracted tasks are structured with an action verb and associated objects. 

We apply a multi-criteria prioritization algorithm tailored for agile environments, considering 

1. Business value: The perceived value to end-users or customers 

2. Technical risk: The potential for technical challenges or failures  

3. Resource requirements: Estimated effort and expertise needed  

4. Urgency: Time-sensitivity of the task 

Each criterion is quantified using natural language analysis and machine learning [13]. Business value is assessed 

via requirement language, identifying core functionality, user experience, and business objectives. Technical risk 

is evaluated using complexity indicators [14].  

A weighted scoring approach combines these factors, with machine learning determining weights based on project 

specific data, allowing adaptation to various contexts and team preferences [15]. 

C. Intelligent Developer Skill Assessment  

GitHub PR data is retrieved using the GitHub API, focusing on programming languages such as Python, 

JavaScript, and C#. The dataset includes PR metadata, modified files, and historical review comments. Data 

preprocessing techniques such as deduplication, noise reduction, and irrelevant PR filtering are applied to ensure 

quality data. The system extracts key metrics from PR files, including, Cyclomatic Complexity (CCN),Measures 

logical branches in functions, A Random Forest classifier is trained to predict PR quality based on extracted 

features. The model is trained using labelled datasets from open-source repositories, categorized into ‘Good’ and 

‘Bad’ PRs. Feature normalization and class balancing techniques, such as SMOTE (Synthetic Minority Over-

sampling Technique) are applied during model training to improve prediction accuracy like Lines of Code (LOC), 

Counts source lines of code ,Function and Class Count: Identifies structural components, Code Cohesion and 

Coupling (CBO, RFC, LCOM): Evaluates maintainability and modularity, Variable and Literal Usage: Counts 

variable assignments, numeric literals, and function calls The system is built using FastAPI for backend processing 

and integrates with GitHub API for real-time PR analysis. The model is deployed as a REST API, providing 

endpoints for: User login and authentication, Fetching and analysing PRs, Generating reports on PR quality. 

D. Predictive project analytics and risk assessment 

 The story point estimation process integrates a Random Forest (RF) classifier with a Deep Q-Network (DQN) 

model, combining supervised and reinforcement learning for improved accuracy. The training dataset consists of 

over 5000 user stories from open-source projects, each containing task titles, descriptions, and associated story 
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points. Data preprocessing merges task titles and descriptions, replaces missing values with empty strings, and 

handles rare story point values to reduce sparsity. Label encoding standardizes values, and TF IDF vectorization 

with n-grams (1,2) converts text into numerical vectors. SMOTE addresses class imbalance by generating 

synthetic examples. 

The RF classifier, configured with 500 estimators and balanced class weights, generates initial predictions by 

constructing multiple decision trees from random data subsets. These trees collectively vote on the final 

prediction, ensuring stability and accuracy while maintaining reproducibility through a fixed random state. The 

DQN model refines these predictions using reinforcement learning with two hidden layers of 256 neurons and 

ReLU activation to capture complex patterns. The output layer employs a linear activation function to produce Q 

values for adjustment actions. Hyperparameters include an exploration rate decaying from 1.0 to 0.01, a gamma 

factor of 0.95 for long-term reward optimization, and a learning rate of 0.001 for stable weight updates. An 

epsilon-greedy policy balances exploration and exploitation, while experience replay with a memory size of 

10,000 stores past experiences to reduce data correlation. Mini-batch training accelerates convergence, and a 

target network updated periodically ensures training stability. The model learns from both successful and failed 

predictions, adjusting its weights to minimize prediction errors.  

Once trained, the hybrid model’s predictions are compared with Scrum team estimates to detect overestimations 

and un derestimations, identifying potential sprint risks. By leveraging both machine learning and reinforcement 

learning, the system dynamically adapts to project conditions, improving Agile project management and risk 

assessment.  

To ensure the accuracy and generalizability of AI models, K-fold cross-validation is implemented, with datasets 

split into training and validation sets to prevent overfitting. Python libraries such as TensorFlow, Scikit-learn, and 

Pandas are used for model development, while visualization tools like Matplotlib and Seaborn help present results 

through charts and statistical evaluations. Performance metrics like precision, recall, and F1-score are used to 

evaluate AI effectiveness. Bias detection mechanisms, along with manual cross-validation, are incorporated to 

minimize errors and ensure the accuracy of AI-generated outputs. 

4. Results and Discussion 

AI-driven meeting documentation systems use sentiment analysis to classify discussions as positive, negative, or 

neutral, offering insights into engagement and discussion dynamics. By analysing utterances and sentiment trends 

over time, the system identifies emotional shifts indicating consensus, dis agreement, or key decisions. With an 

accuracy of 78.3%, the model captures emotional nuances, enhancing contextual understanding and ensuring that 

both factual content and underlying sentiments are recorded. This approach supports informed decision-making 

and improves meeting effectiveness. 

The result of the hybrid model for estimating story points for user stories demonstrates a significant improvement 

in predictive accuracy. The training dataset consists of over 5000 user stories. The initial prediction model, 

utilizing a Random Forest (RF) classifier, achieved an accuracy of 83.54% after fine-tuning hyperparameters such 

as the number of trees and maximum depth to prevent overfitting. The Deep Q-Network (DQN) model further 

optimized hyperparameters, including the learning rate, discount factor, and batch size, to improve 

 

Fig. 1. Accuracy of hybrid model 
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convergence and performance. By combining the RF classifier with the DQN model, the hybrid model achieved 

an accuracy of 97.24%, demonstrating how the hybrid approach significantly enhances estimation accuracy 

compared to the standalone models.  

The dataset used for training and testing consists of 10,000 GitHub pull requests (PRs) from various open source 

projects, encompassing programming languages such as Python, JavaScript, and C. For model training, 80% of 

the data is utilized, while the remaining 20% is reserved for testing the model’s performance. The evaluation 

metrics for the model show promising results, with a precision of 88.2%, recall of 85.7%, and an F1-score of 

86.9%, indicating a well-balanced trade-off between identifying relevant PRs and minimizing false positives. 

These metrics suggest that the model performs effectively in predicting PR quality. 

 

Figure 1  Fig. 2. Developer Skill Assessment 

 

5. Future Works 

Future improvements for the proposed system involve several key enhancements. Real-time transcription will be 

improved for more accurate meeting discussions, and speaker recognition will be refined to better identify team 

members. Sentiment analysis will be enhanced to capture more nuanced emotions, and user studies will help refine 

the system’s usability. AI-driven task extraction and prioritization will be integrated with popular project 

management tools, version control systems, and CI/CD pipelines to streamline workflows. Additionally, 

developer skill assessment models, such as Gradient Boosting, SVM, and Deep Learning, will be explored for 

improved accuracy through feature engineering, hyperparameter tuning, and real-time updates. Risk assessment 

will be strengthened by integrating DevOps tools, allowing for more precise sprint predictions through the 

inclusion of deployment data and testing results in story point estimation 

6. Conclusion 

This research introduces a comprehensive AI-driven project management and resource optimization platform that 

integrates Natural Language Processing (NLP), Machine Learning (ML), and Predictive Analytics. The platform 

improves efficiency by reducing human input and enhancing adaptability to chang ing project requirements. By 

integrating automation into key processes, the system ensures more manageable sprints, ac celerates software 

delivery, and minimizes risks. Automated document generation, optimized task prioritization, developer skill 

assessment, and project risk prediction contribute to better project planning and execution. This allows teams to 
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focus more on innovation and problem-solving, ultimately driving overall project success and meeting stakeholder 

expectations. 
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