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Abstract: - The objective of this paper is to investigate an interpolation process based on the roots of the 

polynomial 𝜋𝑛(𝑥) and it′s subject to an additional conditional Point 𝑥0 = 0. Specifically, we consider two sets of 

nodes: {𝑥𝑖}𝑖=1
𝑛 representing the roots of 𝜋𝑛(𝑥) and  {𝑥𝑖

∗}𝑖=1
𝑛−1corresponding to the roots of 𝜋𝑛

′ (𝑥). Our study focuses 

on establishing the existence and uniqueness of the interpolatory polynomial, deriving its explicit representation, 

and analysing its order of convergence. 
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1. Introduction 

In 1975, L. G. Pál [7] introduced a modification of the Hermite-Fejér interpolation, where function values and 

first derivatives are prescribed at two interlaced sets of nodal points, denoted as {𝑥𝑖}𝑖=1
𝑛  and  {𝑥𝑖

∗}𝑖=1
𝑛−1 , respectively. 

These nodes are structured such that: 

    −∞ < 𝑥1 < 𝑥1
∗ < 𝑥2 < ・ ・ ・ < 𝑥𝑛−1 < 𝑥𝑛−1

∗ < 𝑥𝑛 < +∞. 

Here, the polynomials defining these nodes are given by:  

         𝜔𝑛(𝑥) =  ∏ (𝑥 − 𝑥𝑖)
𝑛−1

𝑖=1
 

Pál proved that for any given set of real numbers {𝑏𝑖}𝑖=1
𝑛  and {𝑏𝑖

∗}𝑖=1
𝑛−1, there exist polynomial 

                                            𝑅2𝑛−1(𝑥𝑖) = 𝑏𝑖             i = 1, 2, 3, ......, n, 

, 

                                           𝑅2𝑛−1(𝑥𝑖
∗) =𝑏𝑖

∗        i = 1, 2, 3, ......, n − 1, 

with additional condition 𝑅𝑛(𝑥0) = 0 where 𝑥0 ≠ 𝑥𝑖  for i=1,2,3,........,n and{𝑏𝑖}𝑖=1
𝑛  and {𝑏𝑖

∗}𝑖=1
𝑛−1i=1 are arbitrary 

real numbers, whose convergence for 𝑅𝑛(𝑥) has been proved by S.A. Eneduanya on the roots of 𝜋𝑛(𝑥). Pál [13], 

Mathur P. and Datta S. [11] and many other authors [4][12][14][15][9] have discussed about various kind of 

interpolation problems. Pál [7] proved that when the values are fixed on one set of n points and derivative values 

on other set of n-1 points, then there exists no unique polynomial ≤ 2n − 2, but fixed function value at one more 

point not belonging to above set of n points there exists a unique polynomial of degree ≤ 2n − 1. In Eneduanya 

[15] investigated special case when 

                           𝜋𝑛(𝑥) = 𝑛(𝑛 − 1) ∫ 𝑃𝑛−1
𝑥

1
(x)dx = (1- 𝑥2)𝑃𝑛−1

′ (x)                  (1) 

where 𝑃𝑛−1 is the (n −1) th the Legendre polynomial with the usual normalization max {|𝑃𝑛−1 (x)| : x ∈ [−1, 1]} 

= 1. For the uniqueness Eneduanya used also the additional condition nodal points 𝑥𝑛
∗   = −1. Szili [9] investigated 

the Pál -type interpolation on the roots of the Hermite-polynomials with the additional conditional point 𝑥0 = 0. 

Both Szili and Eneduanya gave explicit formula and proved approximation theorems. Joo and Szabo [3] gave a 
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common generalization of the classical Fejer interpolation and Pál interpolation. Szili [8] studied the inverse Pál 

interpolation problem on the roots of integrated Legendre polynomials. Later, Yamini Singh and R. Srivastava 

[14] studied an interpolation process on the roots of ultraspherical polynomials. In this paper, we have studied 

about an interpolation on the roots of polynomials 𝜋𝑛(𝑥). Pál type polynomials are a generalization of classical 

orthogonal polynomials and have been studied for their desirable approximation properties. By leveraging the 

structure of these polynomials, we analyse the behaviour of the associated interpolatory functions, their 

convergence characteristics, and their numerical stability. In this study, we investigate (0,1;0) interpolation 

constructed using the roots of a Pál-type interpolatory polynomial.  

    Preliminaries: 

 𝐿𝑒𝑡 𝑃𝑛−1(x) and 𝜋𝑛(𝑥) satisfy the differential equation are 

 (1-𝑥2) 𝑃𝑛−1
′ (𝑥)-2𝑥𝑃𝑛−1

′ (𝑥) + 𝑛(𝑛 − 1)𝑃𝑛(𝑥) = 0.                                            (2) 

  (1-𝑥2) 𝜋𝑛−1
′′ (𝑥) + 𝑛(𝑛 − 1)𝜋𝑛(𝑥) = 0                                                              (3) 

 Respectively. 

       𝑙𝑖,𝑛
∗ (𝑥) =

𝜋𝑛
′ (𝑥).

𝜋𝑛
′′(𝑥𝑖,𝑛

∗ )(𝑥−𝑥𝑖,𝑛
∗ ).

                (𝑖 =  1, 2, 3, . . . . . 𝑛 − 1)                         (4) 

       (1 − 𝑥𝑖
∗2)~(𝑖/𝑛)2                          (from ([2], (6.3.7))                                (5) 

        |𝑃𝑛−1
′ (𝑥𝑖,𝑛

∗ )|~𝑖−3/2𝑛2              (𝑓𝑟𝑜𝑚 ([2];  (8: 9: 2)]),                                (6) 

 

2. Problem: 

Let 𝑥0,𝑛,  𝑥1,𝑛,  𝑥2,𝑛, ......,  𝑥𝑛,𝑛be the roots of the polynomial 𝜋𝑛(𝑥)and 𝑥1,𝑛−1
∗   𝑥2,𝑛−1

∗   𝑥3,𝑛−1
∗   ..., 𝑥𝑛−1,𝑛−1

∗  be the 

roots of polynomial 𝜋𝑛
′ (𝑥). Let 

              -1 < 𝑥1,𝑛 < 𝑥1,𝑛
∗  < 𝑥2,𝑛 < ……… < 𝑥𝑛−1,𝑛 < 𝑥𝑛−1,𝑛

∗ < 𝑥𝑛,𝑛 < 1.                 (7) 

Further, we investigate the following problem: We determine a polynomial 

𝑅𝑛(𝑥) of lowest possible degree satisfying the conditions 

                 𝑅𝑛(𝑓; 𝑥𝑖,𝑛) = 𝑓(𝑥𝑖,𝑛)             (i = 0,1, 2, 3, ......, n),                       (8) 

                  𝑅𝑛
′ (𝑓; 𝑥𝑖,𝑛) = 𝑓′(𝑥𝑖,𝑛)           (i = 1, 2, 3, ......,n),                          (9) 

                 𝑅𝑛(𝑓; 𝑥𝑖,𝑛
∗ ) = 𝑓(𝑥𝑖,𝑛

∗ )               (i = 1, 2, 3, ....., n − 1).                  (10) 

where, 𝑓(𝑥𝑖,𝑛), 𝑓′(𝑥𝑖,𝑛) and 𝑓(𝑥𝑖,𝑛
∗ ) are arbitrary given real numbers. Morever, 

we have to prove the existence, uniqueness, explicit representation and order of 

convergence of interpolatory polynomials. 

3. Explicit Representation of Interpolatory polynomials: 

Now let 𝑓 ∶  [−1, 1]  → ℝ be a differentiable function. If n is even, then we get that 

𝑅𝑛(𝑓; 𝑥) = ∑ 𝑓(𝑥𝑖,𝑛)𝐴𝑖,𝑛(𝑥)

𝑛

𝑖=0

+ ∑ 𝑓′(𝑥𝑖,𝑛)𝐵𝑖,𝑛(𝑥)

𝑛

𝑖=1

+ ∑ 𝑓(𝑥𝑖,𝑛
∗ )𝐶𝑖,𝑛(𝑥)

𝑛−1

𝑖=1

 

                                                                                                                         (11)                                   

is the uniquely determined polynomial of degree ≤ 3n−1 using the well known 

relations for the Legendre polynomials we obtain that the polynomials 𝐴𝑖,𝑛(𝑥), 
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𝐵𝑖,𝑛(𝑥) and 𝐶𝑖,𝑛(𝑥)satisfy the following requirement: 

                  𝐴𝑖,𝑛(𝑥𝑗,𝑛) = 𝛿𝑖,𝑗    (𝑖 =  0, 1, 2, 3, . . . , 𝑛;  𝑗 =  0, 1, 2, 3, . . . , 𝑛) 

                 𝐴𝑖,𝑛
′ (𝑥𝑗,𝑛)= 0,        (𝑖 =  1, 2, 3, . . … . , 𝑛;  𝑗 =  1, 2, 3, . . . . . , 𝑛)          (12) 

                 𝐴𝑖,𝑛(𝑥𝐽,𝑛
∗ ) = 0,        (𝑖 =  1, 2, 3, . . . , 𝑛;  𝑗 =  1, 2, 3, . . . . , 𝑛 −  1) 

                   𝐵𝑖,𝑛(𝑥𝑗,𝑛) = 0        (𝑖 =  1, 2, 3, . . . , 𝑛;  𝑗 =  0, 1, 2, 3, . . . , 𝑛) 

                𝐵𝑖,𝑛
′ (𝑥𝑗,𝑛)= 𝛿𝑖,𝑗 ,     (𝑖 =  1, 2, 3, . . … . , 𝑛;  𝑗 =  1, 2, 3, . . . . . , 𝑛)        (13)    

               𝐵𝑖,𝑛(𝑥𝐽,𝑛
∗ ) = 0,     (𝑖 =  1, 2, 3, . . . , 𝑛;  𝑗 =  1, 2, 3, . . . . , 𝑛 −  1) 

               𝐶𝑖,𝑛(𝑥𝑗,𝑛) = 0       (𝑖 =  1, 2, 3, . . . , 𝑛;  𝑗 =  0, 1, 2, 3, . . . , 𝑛) 

               𝐶𝑖,𝑛
′ (𝑥𝑗,𝑛)= 0,        (𝑖 =  1, 2, 3, . . … . , 𝑛;  𝑗 =  1, 2, 3, . . . . . , 𝑛)          (14) 

               𝐶𝑖,𝑛(𝑥𝐽,𝑛
∗ ) = 𝛿𝑖,𝑗 ,      (𝑖 =  1, 2, 3, . . . , 𝑛;  𝑗 =  1, 2, 3, . . . . , 𝑛 −  1) 

where 𝛿𝑖,𝑗 is the Kronecker symbol. 

Lemma: The fundamental polynomial 𝐴𝑖,𝑛(𝑥)𝑓𝑜𝑟 𝑖 = 0,1,2, … … . , 𝑛 satisfies the interpolatory conditions (12) 

is given by: 

𝐴𝑖,𝑛 (𝑥0) =  
𝜋𝑛

′ (𝑥0).

𝜋𝑛
′ (𝑥𝑖,𝑛)(1+𝑥𝑖,𝑛).

(𝑙𝑖,𝑛(𝑥0))2(1 + 𝑥0)                                             (15) 

 

𝐴𝑖,𝑛(𝑥)  =   
𝜋𝑛

′ (𝑥).

𝜋𝑛
′ (𝑥𝑖,𝑛)(1+𝑥𝑖,𝑛).

(𝑙𝑖,𝑛(𝑥))2(1 + 𝑥) − 
𝜋𝑛(𝑥)𝜋𝑛

′ (𝑥)𝑙𝑖,𝑛(𝑥)

𝜋𝑛
′ (𝑥𝑖,𝑛)

[𝑙𝑖,𝑛
′ (𝑥𝑖,𝑛)  +

                                                                                                                         
1

(1+𝑥𝑖,𝑛)
]    (16)                                             

                                                                                                                                 where,  

                   𝑙𝑖,𝑛(𝑥) =  
𝜋𝑛(𝑥)

𝜋𝑛
′ (𝑥𝑖,𝑛)(x−𝑥𝑖,𝑛)

  (𝑖 =  1, 2, 3, . . . . . 𝑛),                        (17)                        

is the Lagrange fundamental polynomials corresponding to nodal points  𝑥𝑖,𝑛 

(𝑖 =  1,2, . . . . . . , 𝑛). 

 

Lemma: The fundamental polynomial 𝐵𝑖,𝑛(𝑥)for i = 1, 2,...,n that satisfies 

The interpolatory conditions (13) is given by 

                     𝐵𝑖,𝑛(𝑥) = 
𝜋𝑛(𝑥)𝜋𝑛

′ (𝑥)𝑙𝑖,𝑛(𝑥)

𝜋𝑛
′ (𝑥𝑖,𝑛)

 [
𝑥𝑖,𝑛

𝑛(𝑛−1)
+

1

2𝜋𝑛
′ (𝑥𝑖,𝑛)

]                         (18) 

 

Lemma: The fundamental polynomial 𝐶𝑖,𝑛(𝑥) for 𝑖 =  1,2, . . . , 𝑛 − 1 satisfying the interpolatory conditions (14) 

is given by 

                      𝐶𝑖,𝑛(𝑥)  =
𝜋𝑛

2 (𝑥)𝑙𝑖,𝑛
∗ (𝑥)

𝜋𝑛
2 (𝑥𝑖,𝑛

∗ )
                                                             (19) 

4. Order of Convergence of the fundamental polynomials 

        Lemma: For the Lebesgue function of the fundamental polynomials  
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   ∑ |𝐴𝑖,𝑛(𝑥)|

𝑛

𝑖=0

 =  𝑂(𝑛−1/2) 

 

(𝑥 ∈  [−1, 1];  𝑛 = 2,4, … ), 𝑤ℎ𝑒𝑟𝑒 𝑂 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑥.  

 

Proof: We have, 

𝐴𝑖,𝑛(𝑥) = 
𝜋𝑛

′ (𝑥).

𝜋𝑛
′ (𝑥𝑖,𝑛)(1+𝑥𝑖,𝑛).

(𝑙𝑖,𝑛(𝑥))2(1 + 𝑥)-
𝜋𝑛(𝑥)𝜋𝑛

′ (𝑥)𝑙𝑖,𝑛(𝑥)

𝜋𝑛
′ (𝑥𝑖,𝑛)

[𝑙𝑖,𝑛
′ (𝑥𝑖,𝑛) +

1

(1+𝑥𝑖,𝑛)
] 

∑|𝐴𝑖,𝑛(𝑥)|

𝑛

𝑖=0

= 

∑ |
𝜋𝑛

′ (𝑥).

𝜋𝑛
′ (𝑥𝑖,𝑛)(1 + 𝑥𝑖,𝑛).

(𝑙𝑖,𝑛(𝑥))2(1 + 𝑥)|

𝑛

𝑖=0

 

− ∑ |
𝜋𝑛(𝑥)𝜋𝑛

′ (𝑥)𝑙𝑖,𝑛(𝑥)

𝜋𝑛
′ (𝑥𝑖,𝑛)

[𝑙𝑖,𝑛
′ (𝑥𝑖,𝑛) +

1

(1 + 𝑥𝑖,𝑛)
]|

𝑛

𝑖=0

 

= ∑ |
𝜋𝑛

′ (𝑥).

𝜋𝑛
′ (𝑥𝑖,𝑛)(1 + 𝑥𝑖,𝑛).

| |(𝑙𝑖,𝑛(𝑥))2(1 + 𝑥)| − ∑ |
𝜋𝑛(𝑥)𝜋𝑛

′ (𝑥)𝑙𝑖,𝑛(𝑥)

𝜋𝑛
′ (𝑥𝑖,𝑛)

|

𝑛

𝑖=0

𝑛

𝑖=0

 

                                                                                              × |[𝑙𝑖,𝑛
′ (𝑥𝑖,𝑛) +

1

(1 + 𝑥𝑖,𝑛)
]| 

Since |𝜋𝑛(𝑥) | = 𝑂(𝑛1/2) and |𝑃𝑛−1(𝑥)| ≤ 1, 𝑥 ∈ [−1,1]  (𝑓𝑟𝑜𝑚 [5;  2: 3: 4] ). 

= ∑ |
𝑛(𝑛 − 1)𝑃𝑛−1(𝑥)

𝑛(𝑛 − 1)𝑃𝑛−1(𝑥𝑖,𝑛)(1 + 𝑥𝑖,𝑛)
|

𝑛

𝑖=0

|(𝑙𝑖,𝑛(𝑥))2(1 + 𝑥)| − 

∑ |
𝑂(𝑛1/2)𝑛(𝑛 − 1)𝑃𝑛−1(𝑥)𝑙𝑖,𝑛(𝑥)

𝑛(𝑛 − 1)𝑃𝑛−1(𝑥𝑖,𝑛)
|

𝑛

𝑖=0

|[𝑙𝑖,𝑛
′ (𝑥𝑖,𝑛) +

1

(1 + 𝑥𝑖,𝑛)
]| 

                     |𝑃𝑛−1(𝑥𝑖,𝑛)| = (8𝜋𝑖)−1/2       

                            (from([5],Lemma 2.1).                                                          

= ∑ |
1

𝑃𝑛−1(𝑥𝑖)
|

𝑛

𝑖=0

|(𝑙𝑖,𝑛(𝑥))
2

| − ∑ |
𝑂(𝑛1/2)𝑙𝑖,𝑛(𝑥)

𝑃𝑛−1(𝑥𝑖,𝑛)
|

𝑛

𝑖=0

|[𝑙𝑖,𝑛
′ (𝑥𝑖,𝑛) +

1

(1 + 𝑥𝑖,𝑛)
]| 

  = 𝑂(𝑛−1/2). 

Hence, lemma 1 proved. 

 

Lemma 2: For the Lebesgue function of the fundamental polynomials 

     ∑ |𝐵𝑖,𝑛(𝑥)|

𝑛

𝑖=1

 =  𝑂(𝑛−5/2) 
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(𝑥 ∈  [−1, 1];  𝑛 = 2,4, . . . ), 𝑤ℎ𝑒𝑟𝑒 𝑂 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑥.  

 

Proof: We have, 

 

                     𝐵𝑖,𝑛(𝑥) = 
𝜋𝑛(𝑥)𝜋𝑛

′ (𝑥)𝑙𝑖,𝑛(𝑥)

𝜋𝑛
′2(𝑥𝑖,𝑛)

[
𝑥𝑖,𝑛

𝑛(𝑛−1)
+

1

2𝜋𝑛
′ (𝑥𝑖,𝑛)

]          

 ∑ |𝐵𝑖,𝑛(𝑥)|

𝑛

𝑖=1

 

=  ∑ |
𝜋𝑛(𝑥)𝜋𝑛

′ (𝑥)𝑙𝑖,𝑛(𝑥)

𝜋𝑛
′2(𝑥𝑖,𝑛)

 [
𝑥𝑖,𝑛

𝑛(𝑛 − 1)
+

1

2𝜋𝑛
′ (𝑥𝑖,𝑛)

]|

𝑛

𝑖=1

   

       = ∑
|𝜋𝑛(𝑥)| |𝜋𝑛

′ (𝑥)| |𝑙𝑖,𝑛(𝑥)|

|𝜋𝑛
′2(𝑥𝑖,𝑛)|

 |[
𝑥𝑖,𝑛

𝑛(𝑛 − 1)
+

1

2𝜋𝑛
′ (𝑥𝑖,𝑛)

]|

𝑛

𝑖=1

 

                    

= ∑
|𝜋𝑛(𝑥)||𝜋𝑛

′ (𝑥)| |𝑙𝑖,𝑛(𝑥)|

|𝑛2(𝑛 − 1)2𝑃𝑛−1
2 (𝑥𝑖,𝑛)|

 |[
𝑥𝑖,𝑛

𝑛(𝑛 − 1)
+

1

2𝜋𝑛
′ (𝑥𝑖,𝑛)

]| 

𝑛

𝑖=1

   

= 𝑂(𝑛1/2) ∑
|𝜋𝑛

′ (𝑥)| |𝑙𝑖,𝑛(𝑥)|

|𝑛2(𝑛 − 1)2𝑃𝑛−1
2 (𝑥𝑖,𝑛)|

 |
𝑥𝑖,𝑛

𝑛(𝑛 − 1)
+

1

2𝑛(𝑛 − 1)𝑃𝑛−1(𝑥𝑖,𝑛)
| 

𝑛

𝑖=1

   

   = 𝑂(𝑛−5/2).   

Hence, lemma 2 proved. 

Lemma 3: For the Lebesgue function of the fundamental polynomials 

∑ |𝐶𝑖,𝑛(𝑥)| =

𝑛−1

𝑖=1

 𝑂(𝑛−3/2) 

(𝑥 ∈  [−1, 1];  𝑛 = 2,4, . . . ), 𝑤ℎ𝑒𝑟𝑒 𝑂 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑥.  

Proof: We have, 

                      𝐶𝑖,𝑛(𝑥)  =
𝜋𝑛

2 (𝑥)𝑙𝑖,𝑛
∗ (𝑥)

𝜋𝑛
2 (𝑥𝑖,𝑛

∗ )
 

∑|𝐶𝑖,𝑛(𝑥) |

𝒏−𝟏

𝒊=𝟏

= ∑ |
𝜋𝑛

2(𝑥)𝑙𝑖,𝑛
∗ (𝑥)

𝜋𝑛
2(𝑥𝑖,𝑛

∗ )
| 

𝒏−𝟏

𝒊=𝟏

 

                     = ∑ |
𝜋𝑛

2(𝑥)𝑙𝑖,𝑛
∗ (𝑥)

(1 − 𝑥𝑖,𝑛
∗2 )2𝑃𝑛−1

′2 (𝑥𝑖,𝑛
∗ )

| 

𝒏−𝟏

𝒊=𝟏

 

= 𝑂(𝑛1) ∑ |
𝑙𝑖,𝑛

∗ (𝑥)

(1 − 𝑥𝑖,𝑛
∗2 )

2
𝑃𝑛−1

′2 (𝑥𝑖,𝑛
∗ )

| 

𝒏−𝟏

𝒊=𝟏

 = 𝑂(𝑛−3/2) 

Hence, lemma 3 proved. 

Theorem: Let 𝑓 ∶  [−1, 1]  →  ℝ be continuously differentiable function, then 
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the sequence of the interpolation polynomials 𝑅𝑛(𝑓;  𝑥)   (𝑛 =  2, 4, 6, . . . . . . ) given by (11) satisfy the following: 

                           |𝑅𝑛(𝑓;  𝑥)  −  𝑓(𝑥)| = 𝑂 (𝑛−1ω (𝑓′;
1

𝑛
))                          (20) 

Where, ω(𝑓′; 𝛿) is the modulus of continuity of f′and 𝑂 does not depend on x. 

Proof: If 𝑄𝑛(𝑥) is an arbitrary polynomial of degree ≤ 3n − 1 then by 

uniqueness of the polynomial 𝑅𝑛(𝑓;  𝑥) we have 

𝑅𝑛(𝑓; 𝑥) = ∑ 𝑄𝑛(𝑥𝑖,𝑛)

𝑛

𝑖=0

𝐴𝑖,𝑛(𝑥) + ∑ 𝑄𝑛
′(𝑥𝑖,𝑛)𝐵𝑖,𝑛(𝑥) + ∑ 𝑄𝑛(𝑥𝑖,𝑛

∗ )

𝑛−1

𝑖=1

𝑛

𝑖=1

𝐶𝑖,𝑛(𝑥) 

                                                                                                      (21) 

Let 𝑓 ∶  [−1, 1]  →  ℝ be a continuously differentiable function. It is well known (from, e.g. [2, Theorem1.3.3]) 

that there exists a polynomial 𝑄𝑛(𝑥)  of degree at most (3n-1) such that 

                                | 𝑓(x) - 𝑄𝑛(𝑥)| =  𝑂 (𝑛−1ω (𝑓′;
1

𝑛
)) 

                                             and              

                                  |𝑓′(𝑥)  − 𝑄𝑛
′ (𝑥)| =  𝑂 (ω (𝑓′;

1

𝑛
)).    

Now, 

|𝑓(x)-𝑅𝑛(𝑓;  𝑥)| ≤ | 𝑓(x)  − 𝑄𝑛(𝑥)| +  

∑ (𝑄𝑛(𝑥𝑖,𝑛) − 𝑓(𝑥𝑖,𝑛)) 

𝑛

𝑖=0

𝐴𝑖,𝑛(𝑥) + ∑(𝑄𝑛
′(𝑥𝑖,𝑛) − 𝑓′(𝑥𝑖,𝑛))𝐵𝑖,𝑛(𝑥) + ∑ (𝑄𝑛(𝑥𝑖,𝑛

∗ ) − 𝑓(𝑥𝑖,𝑛
∗ ))

𝑛−1

𝑖=1

𝑛

𝑖=1

𝐶𝑖,𝑛(𝑥) 

|𝑓(x)-𝑅𝑛(𝑓;  𝑥)| =                              𝑂 (𝑛−1ω (𝑓′;
1

𝑛
))+𝑂 (𝑛−3/2ω (𝑓′;

1

𝑛
))+𝑂 (𝑛−5/2ω (𝑓′;

1

𝑛
)) 

                              +𝑂 (𝑛−5\2  (𝑓′;
1

𝑛
)).  

which completes the proof of theorem. 

5. Conclusion: 

In this work, we have established the existence, uniqueness, explicit formulation and convergence order of the 

given interpolatory problem under the condition that the nodes {𝑥𝑖}𝑖=1
𝑛  and {𝑥𝑖

∗}𝑖=1
𝑛−1 are the roots of polynomials 

𝜋𝑛(𝑥)and   𝜋𝑛
′ (𝑥) respectively, along with an additional conditional point. Furthermore, if 𝑓 ∶  [−1, 1]  →  ℝ be 

continuously differentiable function, then the sequence of the interpolation polynomials 𝑅𝑛(𝑓; 𝑥) and   𝑅𝑛
′  (𝑓;  𝑥) 

converge uniformly to 𝑓(𝑥) and 𝑓′(𝑥) respectively on [-1,1] as n → ∞. 
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