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Abstract:- Electric propulsion systems have revolutionized transportation by increas ing efficiency, energy 

efficiency, and environmental sustainability. In this study, we analyze a propulsion system comprised of a DC 

motor, a battery pack, and a su percapacitor pack, which are integrated through bidirectional and boost converters. 

In order to characterize the interaction among these components, a mathematical model is developed that 

incorporates both electrical and mechanical dynamics. An equilibrium point is used to evaluate the response of a 

system to perturbations, while a Jacobian matrix is used to evaluate its response to changes. An analysis of the 

eigenvalues and Bode plots of the proposed system is carried out to evaluate its sta bility and efficiency. These 

findings provide valuable insights into optimizing energy transfer, improving power management, and ensuring 

reliable performance in electric vehicle applications. As a result of this research, advanced propulsion systems 

will be developed, leading to innovation in sustainable energy solutions. 

Keywords: Mathematical Modeling, Stability analysis, Electric Propulsion, Numerical simulation, Non linear 

Differential equations. 

 

1. Introduction 

The modeling [1] and simulation of propulsion systems, electric motors, and intelligent motion control play a 

pivotal role in the design process. Currently, various propulsion solutions are being developed, including 

synchronous motors powered by power electronics-based inverters and DC motors utilizing batteries and 

supercapacitors for energy supply and recovery. The proposed energy supply and recovery system comprises a 

DC motor, a battery, and a supercapacitor pack specifically designed for electric vehicle propulsion. Previous 

research has optimized electrical configurations for such systems using DC motors [2], [3] and [4]. This study 

explores new aspects of system architecture and investigates optimization possibilities based on the electrical 

models of system components. Each component is mathematically modeled to construct a comprehensive system 

model, with simulations conducted to identify stability conditions necessary for implementing control strategies 

that enhance system performance.  

Electric propulsion systems offer significant advantages for various ship applica tions with variable velocity 

profiles, such as supply vessels, floating production units, drill ships, shuttle tankers, icebreakers, naval ships, and 

cruise liners. Prior studies provide detailed insights into configurations, applications, maintenance procedures, 

safety protocols, and class regulations. The core concept of these systems involves replacing conventional diesel 

propulsion engines with electric motors and distribut ing power generation across multiple smaller diesel 

generators. Unlike diesel engines, which achieve peak efficiency only at their nominal operating points, electric 

motors maintain high efficiency across a broad range of speeds and power outputs. Ships with variable velocity 

requirements can sustain efficiency by adjusting the number of active diesel generators based on power demand, 

unlike traditional diesel propulsion systems that experience significant efficiency losses outside their optimal 
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range. Additional benefits of these systems are discussed later in the study. The modeling of diesel-electric 

propulsion (DEP) systems is driven by the need to simulate various scenarios to assess performance and ensure 

electrical network stability. Another objective is to advance Power Management Systems (PMS) through 

sophisticated control algorithms that optimize fuel usage and improve safety [5] and [6]. Optimization methods 

determine the ideal number of generators and load-sharing strategies, while handling significant load variations 

may require advanced control techniques and non-linear mathematical models expressed in compact vector forms. 

This study integrates well-established models of individual components to create an interconnected system that 

operates without an infinite bus. A dynamic model for power generation and static models for thruster drives are 

presented. PID controllers are used to represent speed governors and Automatic Voltage Regulators (AVRs), and 

the entire system is described using a non-linear state-space framework suitable for simulation and control design 

[20]. 

 

2. Systematic assessment of an elements 

In combination, the battery pack and supercapacitor pack in the system design pro vide the power and energy 

needed by the system load, which is a DC motor. A bidirectional converter and a boost converter are part of the 

control system. The complete system design is shown in Figure 1. A steady voltage is supplied to the DC electric 

motor’s input by the battery (SB). During the traction phase, the boost converter (CB) only uses step-up mode to 

raise the battery voltage to what the DC motor needs. Power transfer to and from the supercapacitors is facilitated 

by the bidirectional converter (CBD), which operates in step-down mode during the braking phase and step-up 

mode during the traction phase. The supercapacitor pack (SC) recovers energy during braking and provides peak 

power at times of high demand. This reversible converter is necessary for the supercapacitors’ charge and 

discharge processes. The DC motor has a good torque curve at low speeds, making it ideal for the needs of electric 

cars [7]. An ideal passive component coupled in series with a resistance is used to represent the supercapacitor 

pack.  

     

Figure 2.1: The architecture of a propulsion system incorporating a DC motor 

The interactions between the DC bus and the supercapacitors are captured in the mathematical model of the buck-

boost converter and supercapacitor pack system. The mathematical model that illustrates the DC motor’s operation 

includes both mechanical and electrical equa tions that define its linear behaviour. Figure 2.2 provides a detailed 

equivalent circuit representation of a battery pack, which is a fundamental component in energy supply systems 

for propulsion. The circuit consists of two primary elements: an ideal voltage source β1 and an internal series 

resistance α. The ideal voltage source models the open-circuit voltage of the battery, representing the theoretical 

maximum voltage it can provide under no-load conditions. This voltage remains constant and indepen dent of the  
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        Figure 2.2: The equivalent circuit representation of the battery pack 

external load, making it a simplified abstraction of the battery’s chemical potential. The internal series resistance 

α accounts for the real-world losses that oc cur within the battery due to its internal electrochemical and material 

properties. These losses manifest as a voltage drop across the resistance when current x3 flows through the circuit. 

Consequently, the terminal voltage x1, which is the voltage avail able to the external load, is affected by the 

internal resistance and is given by the equation x1 = β1 − αx3.This relationship shows that the terminal voltage 

decreases with increasing current due to the resistive losses. 

This equivalent circuit model is widely used in system-level simulations because of its simplicity and effectiveness 

in capturing the essential behavior of a battery [8]. It enables the analysis of power delivery, energy efficiency, 

and voltage fluctuations when the battery interacts with other components, such as DC motors or converters. By 

incorporating this model into the larger propulsion system, engineers can predict the battery’s performance under 

various operational scenarios and optimize the system’s overall efficiency and stability. Figure 2.3 depicts the 

equivalent circuit representation of a DC motor, designed to capture its electrical behavior in propulsion systems. 

The circuit consists of a supply voltage x9, a series resistance ϕ, an inductance γ3, and an electromotive voltage 

kω. The resistance ϕ accounts for the energy losses due to the motor’s internal wiring and components, while the 

inductance γ3 represents the energy stored in the motor’s magnetic field during operation. The electromotive volt 

age kω, often referred to as back-EMF, is proportional to the motor’s angular speed and opposes the applied 

voltage, reflecting the motor’s dynamic response. The rela tionship between these components is governed by 

Kirchhoff’s voltage law, where the supply voltage is distributed across the resistance, inductance, and back-EMF.  

      

                Figure 2.3: The equivalent circuit representation of the DC motor 

This model serves as a foundation for analyzing the motor’s performance under varying electrical and mechanical 

conditions, enabling its integration into larger propulsion and energy management systems. Figure 2.4 provides 

the Laplace representation of the DC motor’s equivalent model, which is a fundamental tool for analyzing and 

designing propulsion systems. This model uses transfer functions to represent the dynamic relationship between 

the input voltage and the motor’s speed or torque, offering a mathematical framework to study its behavior under 
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various operational conditions. Key components of the DC motor, such as resistance, inductance, and back 

electromotive force (EMF), are included in the model to capture the electrical and mechanical interactions 

accurately [11].         

The resistance represents energy losses due to the internal wiring and other elec trical components, while the 

inductance reflects the energy stored in the motor’s magnetic field during operation. The back EMF, which is 

proportional to the mo tor’s angular velocity, opposes the applied voltage and illustrates the motor’s dynamic 

response. These elements interact according to Kirchhoff’s voltage law, which governs the distribution of the 

input voltage across the motor’s electrical components [12]. 

        

         Figure 2.4: The Laplace representation of the DC motor’s equivalent model. 

The Laplace domain simplifies these complex time-domain interactions into al gebraic equations, enabling easier 

analysis and design of control systems. Engineers use this representation to predict the motor’s response to input 

variations, design control strategies for stability, and optimize performance. By integrating this model into larger 

propulsion and energy management systems, designers can simulate var ious operational scenarios, identify 

potential issues, and implement solutions that enhance overall efficiency and reliability. This approach is 

particularly important in systems where precise control of motor dynamics is critical, such as electric vehicles or 

advanced propulsion systems [13]. 

3. The Proposed Model 

The mathematical model [9] and [10] of the overall system, instrumental in the stability analysis of the propulsion, 

supply, and recovery system featuring a DC motor, is expressed through a set of equations. These equations 

systematically represent the dynamic interactions and operational characteristics of the system components. The 

model encompasses both electrical and mechanical domains, integrating parameters such as the DC motor’s 

resistance, inductance, back electromotive force (EMF), and torque. This representation facilitates a detailed 

investigation of system behavior under varying conditions, enabling precise stability analysis. By incorporating 

the interde pendencies between the battery pack, supercapacitor pack, bidirectional converters, and the DC motor, 

the equations describe energy transfer and recovery processes during traction and braking phases. Furthermore, 

the model is pivotal for predicting the system’s response to control inputs, external disturbances, and operational 

load variations. 

Through this formalized mathematical framework, engineers are equipped to eval uate the performance, identify 

stability margins, and optimize control strategies for the propulsion system. This systematic approach ensures the 

reliable operation of the DC motor in diverse applications, such as electric vehicles and advanced energy 

management systems, while also enhancing energy efficiency and overall system ro bustness. 

                                                                           𝛼𝛽1𝑥1 − 𝑥2 = 0, 

                                                            𝛾1𝑥2 − (1 − 𝛿1)𝛾2𝑥3 = 0, 

                                                      𝛿2𝑥3 + (1 − 𝜖)𝑥4 − 𝜂𝑥5 = 0, 
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                                                                          𝛾3𝑥4 − 𝑥5𝜙 = 0,  

                                                      𝑥6 + (1 − 𝜁)𝜓𝑥7 − 𝜌𝑥8 = 0, 

𝑥7𝛾 + 𝜎 = 0, 

                                                                      𝜆1𝑥8 − 𝜆2𝜔𝑥9 = 0,  

                                                                            𝑥9𝜃 + 𝑘𝜇 = 0. 

The dynamic interactions within the propulsion system are represented by the me chanical interpretation of the 

model, which focuses on motion control, torque produc tion, and energy transfer. The interactions between 

mechanical parts, including the DC motor’s rotational dynamics, the effects of torque, friction, and inertia, and 

the impact of electrical inputs on mechanical outputs, are described by the variables and parameters. This 

framework makes it possible to forecast how the system will behave under various load and speed scenarios, 

which makes stability analysis and mechani cal performance improvement easier in applications like energy 

recovery systems and electric cars. 

                                                            Table:1. Detailed descriptions of the system’s parameters      

    Parameter                                         Description 

𝑥1 Battery Voltage 

𝛼 Battery Resistance 

𝑥3 Battery current 

𝛾1 Battery Inductance 

𝑥5 Supercapacitor Voltage 

𝜙 Supercapacitor resistance 

𝑥4 DC bus voltage 

𝜂 DC bus capacitance 

𝛿1 Boost convertor duty cycle 

𝜁 Bidirectional convertor duty cycle 

𝛾3 Motor Inductance 

𝜙 Motor Resistance 

𝜔 Motor angular speed 

𝑥9 Motor voltage 

𝑥8 Motor current 

𝑘 Viscous friction coefficient 

𝜇 Resistant torque 

 

4. Stability Analysis of the Electric Propulsion System Model 

The objective of this research is to determine if the stability of this system can be determined through the analysis 

of equilibrium points and the assessment of how those equilibrium points respond to perturbations. An equilibrium 

state occurs when a dynamical system reaches a steady-state condition, which implies that all time derivatives of 

the state variables are zero. As a result, the state variables do not change over time, and the rate of variation of 
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each state variable falls. Let 𝑥∗ = (𝑥1
∗, 𝑥2

∗, 𝑥3
∗, … , 𝑥9

∗) represent the equilibrium state of the system, where each 𝑥𝑖
∗ 

(for 𝑖 = 1,2, … ,9) denotes the steady-state value of the corresponding state variable 𝑥𝑖. The equilibrium state 

satisfies the condition that when the time derivatives of all governing differential equations become zero, they 

become algebraic equations [14], [16] and [17]. When a differential equation’s time derivative is zero, all 

governing differential equations reduce to algebraic equations. According to mathematics, if a set of ordi nary 

differential equations of first order of the form governs the system, 

                                                              
𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖(𝑥1, 𝑥2, … , 𝑥9), for 𝑖 = 1,2, … ,9                              (4.1) 

then, at equilibrium, we impose the steady-state condition, 
𝑑𝑥𝑖

𝑑𝑡
= 0, for all 𝑖. By setting the left-hand sides of these 

equations to zero, we obtain a system of nonlinear algebraic equations, 𝑓𝑖(𝑥1, 𝑥2 … 𝑥9) = 0 for 𝑖 = 1,2, … ,9. As a 

result of solving this system, we obtain the equilibrium values A, which determine the state at which the system 

remains unchanged over time. Analysis of       the stability of this equilibrium can be conducted by considering 

the eigenvalues of the Jacobi an matrix of the system, but this step goes beyond just identifying the equilibrium 

state. Thus, the equilibrium solution is obtained by solving the algebraic equations resulting from the steady-state 

condition, which provide the values at which the system maintains a constant state over time 𝑥2
∗ = 𝛼𝛽1𝑥1, 𝑥3

∗ =
𝛾1𝑥2

∗

(1−𝛿1)𝛾2
, 𝑥4

∗ =
𝛿2𝑥3

∗+𝜂𝑥5
∗

(1−𝜖)
, 𝑥5

∗ =
𝛾3𝑥4

∗

𝜙
, 𝑥6

∗ =
−𝜎

𝜈
, 𝑥7

∗ =
𝜌𝑥6

∗+(1−𝜁)𝜓𝑥7
∗

𝜌
, 𝑥8

∗ =
𝜆1𝑥8

∗

𝜆2𝜔
, 𝑥9

∗ =
−𝑘𝜇

𝜃
. This gives the steady-state 

solutions in terms of system parameters. To analyze stability, we linearize the system by computing the Jacobian 

matrix, 

                                𝐽 = (

𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2
…

… … …
𝜕𝑓9

𝜕𝑥1

𝜕𝑓9

𝜕𝑥2
…

    

𝜕𝑓1

𝜕𝑥9
…

𝜕𝑓9

𝜕𝑥9

)    

Substituting the given equations, we derive 

 

The stability of a dynamical system at equilibrium is determined by analyzing the eigenvalues of the Jacobian 

matrix, denoted as J. The Jacobian matrix is a fundamental tool instability analysis and is defined as the matrix of 

first-order partial derivatives of the system of equations governing the dynamics. Mathematically, if the system is 

described by a set of first-order differential equations, 

                                                          
𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖(𝑥1, 𝑥2, … , 𝑥𝑛), for 𝑖 = 1,2,3, … 𝑛.                              (4.2) 

Then the Jacobian matrix J is given by, 

                                                                      𝐽 = (

𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2
…

… … …
𝜕𝑓𝑛

𝜕𝑥1

𝜕𝑓𝑛

𝜕𝑥2
…

    

𝜕𝑓1

𝜕𝑥9
…

𝜕𝑓𝑛

𝜕𝑥𝑛

), 
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Evaluating 𝐽 at the equilibrium point 𝑥∗ denoted as 𝐽(𝑥), provides insight into the system’s local behavior near 

∏equilibrium. To determine stability, we analyze the eigen values 𝜆𝑖 of 𝐽(𝑥∗), which satisfy the characteristic 

equation, det(𝜆 − 𝐽𝐼) = 0. The equilibrium is classified based on the real parts of these eigenvalues. If all 

eigenvalues 𝜆𝑖 have negative real parts, 𝑅𝑒(𝜆𝑖) < 0 for all 𝑖, then perturbations around the equilibrium decay over 

time, and the equilibrium is said to be locally stable (asymptotically stable). If at least one eigenvalue has a positive 

real part, i.e., 𝑅𝑒(𝜆𝑖) > 0 for some 𝑖, then small perturbations grow over time, leading to an unstable equilibrium. 

If some eigenvalues have zero real parts while others have negative real parts, the stability depends on higher-

order nonlinear terms, requiring a more detailed analysis. Solving det(𝜆 − 𝐽𝐼) = 0 gives the characteristic 

equation, ∏(𝜆𝑖 − 𝑎𝑖)=0 for 𝑖 = 1,2, … ,8, where 𝑎𝑖 are the diagonal elements of 𝐽, corresponding to system 

parameters. For stability, all ai must satisfy, 𝑅𝑒(𝜆𝑖) < 0. Each equation must be analyzed separately based on the 

system’s physical constraints. 

To confirm global stability, we define a Lyapunov function, 

𝑉(𝑥) =
1

2
∑ 𝑥𝑖

2                    (4.3) 

Differentiating along system trajectories,  

𝑉′(𝑥) =
1

2
∑ 𝑥𝑖𝑥𝑖 ′      (4.4) 

Substituting system equations, we find 

        𝑉′(𝑥) = −
1

2
𝑐𝑖𝑥𝑖

2                (4.5) 

where 𝑐𝑖 > 0 (system-dependent parameters). Since V (x) < 0, the system is globally stable. 

 

5. Numerical Simulation 

The analysis of the propulsion system’s dynamics is illustrated in the Figure 5.5 through various graphical 

representations, providing insights into its stability, re sponse, and energy flow. The Bode plots assess the 

frequency response of the DC motor, where the magnitude plot indicates high gain at low frequencies, ensuring 

effective disturbance rejection, while attenuation at higher frequencies minimizes in stability. The phase plot 

highlights increasing system lag with frequency, identify ing a critical crossover region that impacts stability. 

These characteristics aid in designing control mechanisms, such as PID controllers, to maintain smooth motor 

operation. The eigenvalue analysis of the Jacobian matrix further supports stability assessment, revealing 

predominantly negative eigenvalues that confirm the system’s ability to return to equilibrium after small 

perturbations. This ensures a controlled and predictable performance of the motor, battery, and overall power 

distribution. Additionally, the time series plot of battery voltage and motor speed demonstrates the energy 

dynamics within the system. Initially, the battery voltage declines due to power consumption before stabilizing, 

while motor speed follows a delayed increase, reflecting the energy transfer process.  

 

This behavior is crucial for optimizing battery management and preventing sudden power losses. Collectively, 

these findings confirm that the propulsion system operates within a stable regime, effectively managing power 

distribution while maintaining reliable performance across varying conditions. The four graphs in the Figure 5.6 

provide a comprehensive analysis of the dynamic behavior and stability characteristics of a DC motor system. 

The first two graphs rep resent the bode magnitude and phase plots, which are essential for frequency domain 

analysis. 
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Figure 5.5: (a) represents battery voltage and motor speed interaction (b) represents the eigenvalues plot of the 

Jacobian matrix (c) and (d) represents the bode plot of DC motor with the values α = 0.05, 𝛽1 = 12, 𝛾1= 0.02, 𝛾2 

= 0.1, 𝛿1 = 0.8, 𝛿2 = 1.05, η = 1.12, ϵ = 0.1, 𝛾3 = 0.03, ψ = 0.1, 𝜆1 = 0.02, 𝜆2 = 1.5, θ = 0.04, k = 0.02, µ = 0.1. 

The magnitude plot illustrates how the system’s gain varies with frequency, indicating a low-pass system that 

effectively responds to low-frequency inputs while attenuating high-frequency noise. The phase plot, on the other 

hand, shows the phase shift introduced by the system, which becomes increasingly negative at higher frequencies, 

signifying a lag in response. These plots are crucial for designing con trollers such as PID controllers to ensure 

system stability. The third graph displays the eigenvalues of the Jacobian matrix, which determine the stability of 

equilibrium points. Positive eigenvalues indicate instability, where small perturbations grow over time, while 

negative eigenvalues signify a stable system where perturbations decay. A mix of positive and negative 

eigenvalues suggests the presence of both stable and unstable regions, requiring further analysis to determine 

overall system behavior. This eigenvalue analysis is particularly useful for studying nonlinear systems and de 

signing control strategies. The final graph presents the time-domain response of the system, showing the evolution 

of battery voltage and motor speed over time. The red curve, likely representing motor speed, initially decreases 

before rising and stabiliz ing, indicating a transient response with underdamped oscillations. The blue curve, 

representing battery voltage, gradually declines as energy is consumed. This analysis provides insights into energy 

efficiency, transient behavior, and system performance under varying conditions. Collectively, these graphs offer 

a detailed evaluation of the DCmotor’s response in both the frequency and time domains, facilitating the develop 

ment of effective control mechanisms, optimizing system performance, and ensuring stability in practical 

applications such as robotics, electric vehicles, and industrial automation. 

The four graphs collectively illustrate the frequency and time-domain behavior of a DC motor system, providing 

insights into its stability, response characteristics, and dynamic performance in the Figure 5.7. The first two graphs 

represent the Bode magnitude and phase plots, which describe how the system responds to different fre quency 

inputs. The magnitude plot indicates that the system behaves as a low-pass f ilter, allowing low-frequency signals 

while attenuating high-frequency components. The phase plot shows the phase shift introduced by the system, 

which becomes in creasingly negative with frequency, indicating a time lag in response. These plots are crucial 

for assessing the stability and control of the motor system. The third graph presents the eigenvalues of the Jacobian 

matrix, which determine the local stability of the system. The presence of both positive and negative eigenvalues 
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suggests a mix of stable and unstable regions, indicating that the system’s response depends on initial conditions 

and system parameters. The final graph illustrates the time-domain be havior of battery voltage and motor speed. 

The red curve, likely representing motor speed, initially decreases before gradually rising, while the blue curve, 

representing battery voltage, steadily declines. This suggests a transient response where the system stabilizes over 

time, reflecting the energy consumption and performance characteris tics of the DC motor. Together, these graphs 

provide a comprehensive understanding of the motor’s operational dynamics, aiding in system optimization and 

controller design. 

 

Figure 5.6: Figure (a) illustrates the interaction between battery voltage and motor speed; graph (b) illustrates the 

Jacobian matrices’ eigenvalues; and graphs (c) and (d) illustrate the bode plot of the DC motor with the indicated 

values. α = 0.05, 𝛽1 = 12, 𝛾1 = 0.02, 𝛾2 = 0.1, 𝛿1 = 0.8, 𝛿2 = 0.05, η = 1.12, ϵ = 1.01, 𝛾3 = 0.03, ψ = 0.1, 𝜆1 = 1.22, 

𝜆2 = 1.5, θ = 0.04, k = 0.02, µ = 0.1. 

The four graphs collectively illustrate the frequency response, stability, and time domain behavior of a DC motor 

system. The first two graphs in the Figure 5.8 represent the Bode magnitude and phase plots, which characterize 

the system’s fre quency response. The magnitude plot shows that the system behaves as a low-pass f ilter, allowing 

low-frequency signals to pass while attenuating higher frequencies. The phase plot indicates the phase shift 

introduced by the system, which increases negatively as the frequency increases, representing the inherent time 

lag in response. These frequency response characteristics are essential for evaluating the stability and control 

performance of the motor. The third graph presents the eigenvalues of the Jacobian matrix, which determine the 

local stability of the system. The distribution of positive and negative eigenvalues suggests the presence of both 

stable and unstable regions, influencing the motor’s dynamic behavior under different conditions. The f inal graph 

shows the time-domain response of battery voltage and motor speed over time. The red curve, which likely 

represents motor speed, exhibits an initial peak followed by a gradual stabilization, while the blue curve, 

representing battery volt age, steadily declines. This behavior reflects the transient and steady-state response of 

the motor, highlighting the system’s energy consumption and performance over time. These analyses provide a 

comprehensive understanding of the motor’s dynamic characteristics, contributing to improved design and control 

strategies. 
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Figure 5.7: The graph in (a) illustrates the interaction between battery voltage and motor speed; the graph in (b) 

illustrates the Jacobian matrix’s eigenvalues; the graph in (c) and (d) shows the bode plot of the DC motor with 

the indicated values; α = 0.05,𝛽1 = 12, 𝛾1 = 0.02, 𝛾2 = 0.1, 𝛿1 = 0.8, 𝛾2 = 0.05, η = 1.12, ϵ = 0.1, 𝛾3 = 0.03, ψ = 

0.1,  𝜆1 = 0.02, 𝜆2 = 1.5, θ = 0.04, k = 0.02, µ = 0.1. 

 

Figure 5.8: In figure (a) we illustrate the interactions between the battery voltage and motor speed; in graph (b) 

we illustrate the eigenvalues of the Jacobian matrix, and in graphs (c) and (d) we illustrate the bode plot of a DC 

motor with the indicated voltages; α = 0.05, 𝛽1 = 12, 𝛾1 = 0.02, 𝛾2 = 0.1, 𝛿1 = 0.8, 𝛿2 = 0.05, η = 1.12, ϵ = 0.1, 𝛾3 

= 0.03, ψ = 0.1, 𝜆1 = 0.02, 𝜆2 = 1.5, θ = 0.04, k = 0.02, µ = 0.1. 
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6. Discussion 

Analyzing the DC motor system in terms of frequency response, stability, and time-domain behavior provides 

several important insights [21]. The Bode magni tude and phase plots indicate that the system acts as a low-pass 

filter, permitting low-frequency signals while attenuating higher frequencies. Additionally, the phase response 

indicates that stability and control are affected by an increasing time lag with frequency. According to the Jacobian 

matrix, there is a combination of stable and unstable regions, revealing the system’s dependence on its initial 

conditions and parameter values [15], [18] and [19]. Furthermore, the time-domain response of the battery voltage 

and motor speed shows an initial transient phase prior to stabilization, illustrating the evolution of energy 

consumption over time and the performance of the system. These findings contribute to a deeper understanding 

of the operation of DC motors, thereby facilitating system optimization and the development of efficient and 

effective controllers to improve their performance and stability. 
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